如圖,已知圓⊙O1與圓⊙O2外切于點(diǎn)P,過(guò)點(diǎn)P的直線(xiàn)交圓⊙O1于A,交圓⊙O2于B,AC為圓⊙O1直徑,BD與⊙O2相切于B,交AC延長(zhǎng)線(xiàn)于D.
(Ⅰ)求證:
(Ⅱ)若BC、PD相交于點(diǎn)M,則
見(jiàn)詳解
解析試題分析:(Ⅰ)根據(jù)切線(xiàn)的性質(zhì)證明;(Ⅱ)由P、B、D、C四點(diǎn)共圓,又易證,即根據(jù)三角形相似得出相似比.
試題解析:
證明:(Ⅰ)如圖,過(guò)點(diǎn)P作兩圓公切線(xiàn)交BD于T,
連接PC ,∵AC為直徑,,
,
,
又BD與⊙O2相切于B,
PT為兩圓公切線(xiàn),
,,
,
,
故. (5分)
(Ⅱ) 由(Ⅰ)易證∽,
∴又由(Ⅰ)知∠ACP=∠DBP,
∴P、B、D、C四點(diǎn)共圓,又易證,
∴
∴. (10分)
考點(diǎn):圓的切線(xiàn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中點(diǎn),ED的延長(zhǎng)線(xiàn)與CB的延長(zhǎng)線(xiàn)交于點(diǎn)F.
求證:FD2=FB·FC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,為圓的切線(xiàn),為切點(diǎn),,的角平分線(xiàn)與和圓分別交于點(diǎn)和
(1)求證 (2)求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線(xiàn)AB經(jīng)過(guò)⊙O上的點(diǎn)C,并且OA=OB,CA=CB,⊙O交直線(xiàn)OB于E、D,連結(jié)EC、CD.
(Ⅰ)求證:直線(xiàn)AB是⊙O的切線(xiàn);
(Ⅱ)若tan∠CED=,⊙O的半徑為3,求OA的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知四邊形ABCD內(nèi)接于,且AB是的直徑,過(guò)點(diǎn)D的的切線(xiàn)與BA的延長(zhǎng)線(xiàn)交于點(diǎn)M.
(1)若MD=6,MB=12,求AB的長(zhǎng);
(2)若AM=AD,求∠DCB的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分10分)選修4—1:幾何證明選講 如圖,直線(xiàn)AB為圓的切線(xiàn),切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線(xiàn)BE交圓于點(diǎn)E,DB垂直BE交圓于D。
(Ⅰ)證明:DB=DC;
(Ⅱ)設(shè)圓的半徑為1,BC=,延長(zhǎng)CE交AB于點(diǎn)F,求△BCF外接圓的半徑。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知切⊙于點(diǎn)E,割線(xiàn)PBA交⊙于A、B兩點(diǎn),∠APE的平分線(xiàn)和AE、BE分別交于點(diǎn)C、D.
求證:(Ⅰ); (Ⅱ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是圓的直徑,、在圓上,、的延長(zhǎng)線(xiàn)交直線(xiàn)于點(diǎn)、,.求證:
(Ⅰ)直線(xiàn)是圓的切線(xiàn);
(Ⅱ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知圓外有一點(diǎn),作圓的切線(xiàn),為切點(diǎn),過(guò)的中點(diǎn),作割線(xiàn),交圓于、兩點(diǎn),連接并延長(zhǎng),交圓于點(diǎn),連續(xù)交圓于點(diǎn),若.
(1)求證:△∽△;
(2)求證:四邊形是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com