已知橢圓C:+=1(a>b>0)的焦距為4,且過點(diǎn)P(,).
(1)求橢圓C的方程;
(2)設(shè)Q(x0,y0)(x0y0≠0)為橢圓C上一點(diǎn).過點(diǎn)Q作x軸的垂線,垂足為E.取點(diǎn)A(0,2),連接AE,過點(diǎn)A作AE的垂線交x軸于點(diǎn)D.點(diǎn)G是點(diǎn)D關(guān)于y軸的對稱點(diǎn),作直線QG,問這樣作出的直線QG是否與橢圓C一定有唯一的公共點(diǎn)?并說明理由.
(1) +=1 (2) 直線QG與橢圓C一定有唯一的公共點(diǎn),理由見解析
【解析】
解:(1)因?yàn)榻咕酁?/span>4,
所以a2-b2=4.
又因?yàn)闄E圓C過點(diǎn)P(,),
所以+=1,
故a2=8,b2=4,
從而橢圓C的方程為+=1.
(2)一定有唯一的公共點(diǎn).
由題意,E點(diǎn)坐標(biāo)為(x0,0).
設(shè)D(xD,0),則=(x0,-2),=(xD,-2).
再由AD⊥AE知, ·=0,
即xDx0+8=0.
由于x0y0≠0,故xD=-.
因?yàn)辄c(diǎn)G是點(diǎn)D關(guān)于y軸的對稱點(diǎn),所以點(diǎn)G(,0).
故直線QG的斜率kQG==.
又因Q(x0,y0)在橢圓C上,
所以+2=8.①
從而kQG=-.
故直線QG的方程為
y=-(x-).②
將②代入橢圓C方程,得
(+2)x2-16x0x+64-16=0.③
再將①代入③,化簡得
x2-2x0x+=0.
解得x=x0,y=y0,
即直線QG與橢圓C一定有唯一的公共點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
x2 |
m2 |
y2 |
n2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年陜西卷) (14分)
已知橢圓C:=1(a>b>0)的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:=1()的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于、兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求△面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題
已知橢圓C:+=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山東省濟(jì)南市2010屆高三第二次模擬考試數(shù)學(xué)文 題型:選擇題
(本小題滿分12分)
已知橢圓C: +=1(a>b>0)的離心率e=,且橢圓經(jīng)過點(diǎn)N(2,-3).
(1)求橢圓C的方程;
(2)求橢圓以M(-1,2)為中點(diǎn)的弦所在直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com