已知橢圓+ =1(a>b>c>0,a2=b2+c2)的左右焦點分別為F1,F2,若以F2為圓心,b―c為半徑作圓F2,過橢圓上一點P作此圓的切線,切點為T,且|PT|的最小值為(a―c),則橢圓的離心率e的取值范圍是 .
科目:高中數學 來源:2013-2014學年人教版高考數學文科二輪專題復習提分訓練24練習卷(解析版) 題型:解答題
已知橢圓E:+=1(a>b>0),以拋物線y2=8x的焦點為頂點,且離心率為.
(1)求橢圓E的方程;
(2)若F為橢圓E的左焦點,O為坐標原點,直線l:y=kx+m與橢圓E相交于A、B兩點,與直線x=-4相交于Q點,P是橢圓E上一點且滿足=+,證明·為定值,并求出該值.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年人教版高考數學文科二輪專題復習提分訓練24練習卷(解析版) 題型:解答題
在平面直角坐標系xOy中,已知橢圓C1:+=1(a>b>0)的左焦點為F1(-1,0),且點P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年人教版高考數學文科二輪專題復習提分訓練24練習卷(解析版) 題型:選擇題
已知橢圓C:+=1(a>b>0)的離心率為.雙曲線x2-y2=1的漸近線與橢圓C有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓C的方程為( )
(A) +=1 (B) +=1
(C) +=1 (D) +=1
查看答案和解析>>
科目:高中數學 來源:2013-2014學年人教版高考數學文科二輪專題復習提分訓練22練習卷(解析版) 題型:解答題
已知橢圓C:+=1(a>b>0),左、右兩個焦點分別為F1,F2,上頂點A(0,b),△AF1F2為正三角形且周長為6.
(1)求橢圓C的標準方程及離心率;
(2)O為坐標原點,P是直線F1A上的一個動點,求|PF2|+|PO|的最小值,并求出此時點P的坐標.
查看答案和解析>>
科目:高中數學 來源:2012-2013學年河北省高三3月月考數學試卷(解析版) 題型:解答題
如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(1)求橢圓和雙曲線的標準方程;
(2)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com