16.求(1+x)3+(1+x)4+(1+x)5+…+(1+x)20的展開(kāi)式中x3的系數(shù).

分析 利用等比數(shù)列的求和公式,化簡(jiǎn)所給的式子,再利用二項(xiàng)展開(kāi)式的通項(xiàng)公式,求得展開(kāi)式中x3的系數(shù).

解答 解:(1+x)3+(1+x)4+(1+x)5+…+(1+x)20 =$\frac{{{{(1+x)}^3}[1-{{(1+x)}^{18}}]}}{1-(1+x)}$=$\frac{{{{(1+x)}^{21}}-{{(1+x)}^3}}}{x}$,
顯然只有(1+x)21中x4項(xiàng)與字母x相除可得x3項(xiàng),
∴x3的系數(shù)為${C}_{21}^{4}$=5985.

點(diǎn)評(píng) 本題主要考查等比數(shù)列的求和公式的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=ex-x(e為自然對(duì)數(shù)的底數(shù))在區(qū)間[0,1]上的最大值是( 。
A.1+$\frac{1}{e}$B.1C.e+1D.e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.對(duì)一批底部周長(zhǎng)屬于[80,130](單位:cm)的樹(shù)木進(jìn)行研究,從中隨機(jī)抽出200株樹(shù)木并測(cè)出其底部周長(zhǎng),得到頻率分布直方圖如圖所示,由此估計(jì),這批樹(shù)木的底部周長(zhǎng)的眾數(shù)是105cm,中位數(shù)是$\frac{310}{3}$cm,平均數(shù)是103.5cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)為奇函數(shù),且當(dāng)x<0時(shí),f(x)=2x2-1,則f(1)的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在平面坐標(biāo)系xOy中,拋物線(xiàn)y2=-2px(p>0)的焦點(diǎn)F與雙曲線(xiàn)x2-8y2=8的左焦點(diǎn)重合,點(diǎn)A在拋物線(xiàn)上,且|AF|=6,若P是拋物線(xiàn)準(zhǔn)線(xiàn)上一動(dòng)點(diǎn),則|PO|+|PA|的最小值為( 。
A.3$\sqrt{5}$B.4$\sqrt{3}$C.3$\sqrt{7}$D.3$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知sinθ+cosθ=$\frac{1}{5}$,θ∈($\frac{π}{2}$,π),求tanθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若對(duì)任意正實(shí)數(shù)a,不等式x2≤1+a恒成立,則實(shí)數(shù)x的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知x>0,y>0,且2x+y=xy.則x+2y的最小值為( 。
A.5B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知雙曲線(xiàn)C1:$\frac{y^2}{m+3}$-$\frac{x^2}{m}$=1(m>0)與雙曲線(xiàn)C2:$\frac{x^2}{4}$-$\frac{y^2}{16}$=1有相同的漸近線(xiàn),則兩個(gè)雙曲線(xiàn)的四個(gè)焦點(diǎn)構(gòu)成的四邊形面積為( 。
A.10B.20C.10$\sqrt{5}$D.40

查看答案和解析>>

同步練習(xí)冊(cè)答案