20.已知f(x)是定義在R上的奇函數(shù),f(x)滿足f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=x,則f(37.5)等于-0.5.

分析 根據(jù)題意,由f(x+2)=-f(x)可得f(x+4)=-f(x+2)=f(x),即函數(shù)f(x)的周期為4,即有f(37.5)=f(1.5),結(jié)合題意可得f(1.5)=f[2+(-0.5)]=-f(-0.5),結(jié)合函數(shù)的奇偶性可得f(0.5)=-f(-0.5),進(jìn)而結(jié)合函數(shù)在0≤x≤1上的解析式可得f(0.5)的值,綜合即可得答案.

解答 解:根據(jù)題意,由于f(x+2)=-f(x),則有f(x+4)=-f(x+2)=f(x),即函數(shù)f(x)的周期為4,
則有f(37.5)=f(1.5+4×9)=f(1.5),
又由f(x+2)=-f(x),則有f(1.5)=f[2+(-0.5)]=-f(-0.5),
又由函數(shù)為奇函數(shù),則f(0.5)=-f(-0.5),
又由當(dāng)0≤x≤1時(shí),f(x)=x,則f(0.5)=0.5;
則有f(37.5)=f(1.5)=-f(-0.5)=f(0.5)=0.5,
故f(37.5)=0.5;
故答案為:0.5.

點(diǎn)評(píng) 本題考查函數(shù)奇偶性的應(yīng)用,涉及函數(shù)的周期性的應(yīng)用,關(guān)鍵是求出函數(shù)f(x)的周期.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若2a3=3+a1,則S9的值為( 。
A.15B.27C.30D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列選項(xiàng)中說法正確的是( 。
A.命題“p∨q為真”是命題“p∧q為真”的必要條件
B.向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}•\overrightarrow>0$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角
C.若am2≤bm2,則a≤b
D.“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x≥0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知{an}是公差為d的等差數(shù)列,它的前n項(xiàng)和為Sn,S4=2S2+8.
(I)求公差d的值;
(II )若a1=1,設(shè)Tn是數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和,求使不等式Tn≥$\frac{1}{18}$(m2-5m)對(duì)所有的n∈N*恒成立的最大正整數(shù)m的值;
(III)設(shè)bn=$\frac{2+{a}_{n}}{{a}_{n}}$,若對(duì)任意的n∈N*,都有bn≤b4成立,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在區(qū)間[0,1]上隨機(jī)選取兩個(gè)數(shù)x和y,則y>2x的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知定圓M:(x-3)2+y2=16和圓M所在平面內(nèi)一定點(diǎn)A,點(diǎn)P是圓M上一動(dòng)點(diǎn),線段PA的垂直平分線l交直線PM于點(diǎn)Q.
(Ⅰ)討論Q點(diǎn)的軌跡可能是下面的情形中的哪幾種:①橢圓;②雙曲線;③拋物線;④圓;⑤直線;⑥一個(gè)點(diǎn).
(Ⅱ)若定點(diǎn)A(5,0),試求△QMA的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在△ABC中,E,F(xiàn)分別是邊BC,AC上的點(diǎn),且△ABE是邊長為3的正三角形,EF∥AB,EF=1,則sinC等于( 。
A.$\frac{{\sqrt{7}}}{14}$B.$\frac{{\sqrt{7}}}{7}$C.$\frac{{\sqrt{21}}}{14}$D.$\frac{{\sqrt{21}}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等比數(shù)列{an}的前n項(xiàng)和是Sn,且S3=7,S6=63.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令f(n)=$\frac{{a}_{n}}{{a}_{n}+{2}^{1006}}$,求數(shù)列{f(n)}的前2013項(xiàng)之和T2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)$f(x)=\frac{1}{3}m{x^3}+\frac{1}{2}n{x^2}+x+2017$,其中m∈{2,4,6,8},n∈{1,3,5,7},從這些函數(shù)中任取不同的兩個(gè)函數(shù),在它們?cè)冢?,f(1))處的切線相互平行的概率是( 。
A.$\frac{7}{120}$B.$\frac{7}{60}$C.$\frac{7}{30}$D.以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案