A. | $\frac{{\sqrt{7}}}{14}$ | B. | $\frac{{\sqrt{7}}}{7}$ | C. | $\frac{{\sqrt{21}}}{14}$ | D. | $\frac{{\sqrt{21}}}{7}$ |
分析 首先根據(jù)三角形相似得到EC長度,結(jié)合余弦定理和正弦定理解答.
解答 解:在△ABC中,E,F(xiàn)分別是邊BC,AC上的點(diǎn),且△ABE是邊長為3的正三角形,EF∥AB,EF=1,
所以三角形EFC中,∠FEC=60°,$\frac{EC}{BE+EC}=\frac{1}{3}$解得EC=$\frac{3}{2}$,
所以FC2=EF2+EC2-2EF×EC×cos60°=$\frac{7}{4}$,所以FC=$\frac{\sqrt{7}}{2}$,
由正弦定理得到$\frac{EF}{sinC}=\frac{FC}{sin∠FEC}$即$\frac{1}{sinC}=\frac{\frac{\sqrt{7}}{2}}{\frac{\sqrt{3}}{2}}$,得到sinC=$\frac{\sqrt{21}}{7}$;
故選:D.
點(diǎn)評 本題考查了利用余弦定理和正弦定理解三角形;熟練掌握兩個(gè)定理的運(yùn)用條件是解答的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com