分析 (1)將y=x+2代入橢圓方程,$\frac{x^2}{a^2}+{y^2}=1$,由△≥0,即可求得a的取值范圍;
(2)由(1)可知,$a≥\sqrt{3}$,當a=$\sqrt{3}$時,橢圓方程為$\frac{x^2}{3}+{y^2}=1$;
(3)由題意可知:kQA=kQM,$\frac{{{y_0}-{y_1}}}{{{x_0}-{x_1}}}=\frac{{{y_0}-m}}{x_0}$,求得m和n的表達式,$mn=\frac{{{x_0}{y_1}-{x_1}{y_0}}}{{{x_0}-{x_1}}}•\frac{{{x_0}{y_1}+{x_1}{y_0}}}{{{x_0}+{x_1}}}=\frac{{{x_0}^2{y_1}^2-{x_1}^2{y_0}^2}}{{{x_0}^2-{x_1}^2}}$,由A和Q在橢圓上,將A和Q點坐標代入橢圓上,求得$y_0^2=1-\frac{x_0^2}{3}$,$y_1^2=1-\frac{x_1^2}{3}$,代入即可求得mn=1,可判斷mn是否為定值.
解答 解:(1)將y=x+2代入橢圓方程$\frac{x^2}{a^2}+{y^2}=1$,
得(a2+1)x2+4a2x+3a2=0,
∵直線y=x+2與橢圓有公共點,△=16a4-4(a2+1)×3a2≥0,得a2≥3,
∴$a≥\sqrt{3}$.
(2)橢圓的方程為:$\frac{x^2}{3}+{y^2}=1$.
(3)設A(x1,y1),B(-x1,y1),Q(x0,y0),且M(0,m),N(0,n),
∵kQA=kQM,
∴$\frac{{{y_0}-{y_1}}}{{{x_0}-{x_1}}}=\frac{{{y_0}-m}}{x_0}$,即${y_0}-m=\frac{{{x_0}({y_0}-{y_1})}}{{{x_0}-{x_1}}}$,
∴m=y0-$\frac{{{x_0}({y_0}-{y_1})}}{{{x_0}-{x_1}}}$=$\frac{{{x_0}{y_1}-{x_1}{y_0}}}{{{x_0}-{x_1}}}$.同理可得n=$\frac{{{x_0}{y_1}+{x_1}{y_0}}}{{{x_0}+{x_1}}}$.
∴$mn=\frac{{{x_0}{y_1}-{x_1}{y_0}}}{{{x_0}-{x_1}}}•\frac{{{x_0}{y_1}+{x_1}{y_0}}}{{{x_0}+{x_1}}}=\frac{{{x_0}^2{y_1}^2-{x_1}^2{y_0}^2}}{{{x_0}^2-{x_1}^2}}$,
又$\frac{{{x_0}^2}}{3}+y_0^2=1$,$\frac{{{x_1}^2}}{3}+y_1^2=1$,
∴$y_0^2=1-\frac{x_0^2}{3}$,$y_1^2=1-\frac{x_1^2}{3}$,
∴$mn=\frac{{{x_0}^2(1-\frac{x_1^2}{3})-{x_1}^2(1-\frac{x_0^2}{3})}}{{{x_0}^2-{x_1}^2}}=\frac{{{x_0}^2-{x_1}^2}}{{{x_0}^2-{x_1}^2}}=1$,
則mn為定值1.
點評 本題考查橢圓的標準方程及其簡單性質,考查直線與橢圓的位置關系,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com