在△ABC中,角A、B、C所對的邊分別為a、b、c,
q
=(-1,2a),
p
=(2b-c,cosC)且
q
p

(1)求角A的大;
(2)求函數(shù)f(C)=1-
2cos2C
1+tanC
的值域.
考點:平面向量數(shù)量積的運算,三角函數(shù)中的恒等變換應(yīng)用
專題:平面向量及應(yīng)用
分析:(1)利用數(shù)量積運算和正弦定理、誘導(dǎo)公式可得cosA=
1
2
,即可得出;
(2)利用倍角公式、同角三角函數(shù)基本關(guān)系式、倍角公式、兩角和差的正弦公式正弦函數(shù)單調(diào)性即可得出.
解答: 解:(1)∵
q
p
,
∴-(2b-c)+2acosC=0,
根據(jù)正弦定理,得2sinAcosC=2sinB-sinC,
又sinB=sin(A+C)=sinAcosC+cosAsinC,
∴2cosAsinC=sinC,∵sinC≠0,∴cosA=
1
2
,
又0<A<π,∴A=
π
3
;
(2)函數(shù)f(C)=1-
2cos2C
1+tanC
=1-
2(cos2C-sin2C)
1+
sinC
cosC

=1-2cos2C+2sinCcosC
=-cos2C+sin2C
=
2
sin(2C-
π
4
)
,
0<C<
3
,∴-
π
4
<2C-
π
4
13π
12
,∴-
2
2
<sin(2C-
π
4
)≤1

-1<
2
sin(2C-
π
4
)≤
2
,
∴f(C)的值域是(-1,
2
]
點評:本題考查了數(shù)量積運算和正弦定理、誘導(dǎo)公式、倍角公式、同角三角函數(shù)基本關(guān)系式、兩角和差的正弦公式、正弦函數(shù)單調(diào)性等基礎(chǔ)知識與基本技能方法,考查了推理能力和計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1的底面是邊長2正三角形,側(cè)棱與底面垂直,且長為
3
,D是AC的中點.
(1)求證:B1C∥平面A1BD;
(2)求直線1C與平面ABB1A1所成角的正弦值;
(3)在線段AA1上是否存在一點E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,且兩個坐標(biāo)系取相等的長度單位.曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)過點P(2,0),傾斜角為
π
6
的直線l與曲線C交于A、B兩點,求
1
|PA|
+
1
|PB|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
2
x2
-lnx,a∈R
(1)若a=1,求f(x)的單調(diào)遞增區(qū)間;
(2)若任意x∈(0,e],函數(shù)g(x)=
a
2
x2-lnx-
1
2
的值恒為正值,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|2x+1|-|x-3|
(1)求函數(shù)y=f(x)的最小值;
(2)若f(x)≥ax+
a
2
-
7
2
恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是奇函數(shù),當(dāng)x>0時f(x)=x-x2,求函數(shù)f(x)的解析式并作圖指出其單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)集A中有5個元素,數(shù)集B中有3個元素,若集合B中的元素在A中都有元素和它對應(yīng),且滿足f(a1)<f(a2)<(fa3)<f(a4)<f(a5),共可以構(gòu)成幾種從B到A的映射?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1,an=-2an-1(n≥2,n∈N),則其前6項的和S6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)g(x)=ax2-2ax+b+1(a>0)在區(qū)間[2,3]上有最大值4,最小值1.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)設(shè)f(x)=
g(x)
x
.若f(2x)-k•2x≥0在x∈[-1,1]時恒成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案