【題目】在直三棱柱,,F、E分別是和的中點(diǎn).
(1)證明:平面;
(2)若,求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)連接,由//,即可由線線平行推證線面平行;
(2)先推證,以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求得兩個(gè)平面的法向量,即可由此求得二面角的余弦值.
(1)證明:連結(jié),在中,F為長方形對角線的交點(diǎn),
如下圖所示:
∴F為的中點(diǎn),∴,
又平面,平面,
∴平面
(2)連結(jié),由直三棱柱性質(zhì)及,得,
∵,,∴平面,
∵平面,∴,
∵,∴,
∵,,∴平面,
∵平面,∴,
以C為坐標(biāo)原點(diǎn),射線,,為x,y,z軸,建立空間直角坐標(biāo)系,
如下圖所示:
,,,,,
設(shè)平面的法向量,
則取,得,
設(shè)平面的法向量,
則,取,得,
設(shè)二面角的平面角為,
則二面角的余弦值為:
.
故二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為2,過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的右焦點(diǎn)為,定點(diǎn),過點(diǎn)且斜率不為零的直線與橢圓交于,兩點(diǎn),以線段為直徑的圓與直線的另一個(gè)交點(diǎn)為,試探究在軸上是否存在一定點(diǎn),使直線恒過該定點(diǎn),若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓柱OO1底面半徑為1,高為π,ABCD是圓柱的一個(gè)軸截面.動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿著圓柱的側(cè)面到達(dá)點(diǎn)D,其距離最短時(shí)在側(cè)面留下的曲線Γ如圖所示.將軸截面ABCD繞著軸OO1逆時(shí)針旋轉(zhuǎn)θ(0<θ<π)后,邊B1C1與曲線Γ相交于點(diǎn)P.
(1)求曲線Γ長度;
(2)當(dāng)時(shí),求點(diǎn)C1到平面APB的距離;
(3)是否存在θ,使得二面角D﹣AB﹣P的大小為?若存在,求出線段BP的長度;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由于《中國詩詞大會(huì)》節(jié)目在社會(huì)上反響良好,某地也模仿并舉辦民間詩詞大會(huì),進(jìn)入正賽的條件為:電腦隨機(jī)抽取10首古詩,參賽者能夠正確背誦6首及以上的進(jìn)入正賽.若詩詞愛好者甲、乙參賽,他們背誦每一首古詩正確的概率均為.
(1)求甲進(jìn)入正賽的概率.
(2)若參賽者甲、乙都進(jìn)入了正賽,現(xiàn)有兩種賽制可供甲、乙進(jìn)行PK,淘汰其中一人.
賽制一:積分淘汰制,電腦隨機(jī)抽取4首古詩,每首古詩背誦正確加2分,錯(cuò)誤減1分.由于難度增加,甲背誦每首古詩正確的概率為,乙背誦每首古詩正確的概率為,設(shè)甲的得分為,乙的得分為.
賽制二:對詩淘汰制,甲、乙輪流互出詩名,由對方背誦且互不影響,乙出題,甲回答正確的概率為0.3,甲出題,乙回答正確的概率為0.4,誰先背誦錯(cuò)誤誰先出局.
(i)賽制一中,求甲、乙得分的均值,并預(yù)測誰會(huì)被淘汰;
(ii)賽制二中,誰先出題甲獲勝的概率大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春節(jié)期間,全國人民都在抗擊“新型冠狀病毒肺炎”的斗爭中.當(dāng)時(shí)武漢多家醫(yī)院的醫(yī)用防護(hù)物資庫存不足,某醫(yī)院甚至面臨斷貨危機(jī),南昌某生產(chǎn)商現(xiàn)有一批庫存的醫(yī)用防護(hù)物資,得知消息后,立即決定無償捐贈(zèng)這批醫(yī)用防護(hù)物資,需要用A、B兩輛汽車把物資從南昌緊急運(yùn)至武漢.已知從南昌到武漢有兩條合適路線選擇,且選擇兩條路線所用的時(shí)間互不影響.據(jù)調(diào)查統(tǒng)計(jì)2000輛汽車,通過這兩條路線從南昌到武漢所用時(shí)間的頻數(shù)分布表如下:
所用的時(shí)間(單位:小時(shí)) | ||||
路線1的頻數(shù) | 200 | 400 | 200 | 200 |
路線2的頻數(shù) | 100 | 400 | 400 | 100 |
假設(shè)汽車A只能在約定交貨時(shí)間的前5小時(shí)出發(fā),汽車B只能在約定交貨時(shí)間的前6小時(shí)出發(fā)(將頻率視為概率).為最大可能在約定時(shí)間送達(dá)這批物資,來確定這兩車的路線.
(1)汽車A和汽車B應(yīng)如何選擇各自的路線.
(2)若路線1、路線2的“一次性費(fèi)用”分別為3.2萬元、1.6萬元,且每車醫(yī)用物資生產(chǎn)成本為40萬元(其他費(fèi)用忽略不計(jì)),以上費(fèi)用均由生產(chǎn)商承擔(dān),作為援助金額的一部分.根據(jù)這兩輛車到達(dá)時(shí)間分別計(jì)分,具體規(guī)則如下(已知兩輛車到達(dá)時(shí)間相互獨(dú)立,互不影響):
到達(dá)時(shí)間與約定時(shí)間的差x(單位:小時(shí)) | |||
該車得分 | 0 | 1 | 2 |
生產(chǎn)商準(zhǔn)備根據(jù)運(yùn)輸車得分情況給出現(xiàn)金排款,兩車得分和為0,捐款40萬元,兩車得分和每增加1分,捐款增加20萬元,若汽車A、B用(1)中所選的路線運(yùn)輸物資,記該生產(chǎn)商在此次援助活動(dòng)中援助總額為Y(萬元),求隨機(jī)變量Y的期望值,(援助總額一次性費(fèi)用生產(chǎn)成本現(xiàn)金捐款總額)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的四個(gè)頂點(diǎn)圍成的菱形的面積為,橢圓的一個(gè)焦點(diǎn)為.
(1)求橢圓的方程;
(2)若,為橢圓上的兩個(gè)動(dòng)點(diǎn),直線,的斜率分別為,,當(dāng)時(shí),的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com