如圖,正方形ABCD中,M是邊CD的中點(diǎn),
設(shè),那么的值等于         。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,四邊形ABCD為矩形,點(diǎn)M是BC的中點(diǎn),CN=CA,用向量法證明:
(1)D、N、M三點(diǎn)共線;(2)若四邊形ABCD為正方形,則DN=BN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)如圖,已知四邊形ABCD是等腰梯形,E、F分別是腰AD、BC的中點(diǎn),M、N在線段EF上且EM=MN=NF,下底是上底的2倍,若,求
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過(guò)點(diǎn)B作射線BBlAC.動(dòng)點(diǎn)D從點(diǎn)A出發(fā)沿射線AC方向以每秒5個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E從點(diǎn)C出發(fā)沿射線AC方向以每秒3個(gè)單位的速度運(yùn)動(dòng).過(guò)點(diǎn)D作DH⊥AB于H,過(guò)點(diǎn)E作EF⊥AC交射線BB1于F,G是EF中點(diǎn),連接DG.設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),AD=AB,并求出此時(shí)DE的長(zhǎng)度;
(2)當(dāng)△DEG與△ACB相似時(shí),求t的值;
(3)以DH所在直線為對(duì)稱軸,線段AC經(jīng)軸對(duì)稱變換后的圖形為A′C′.
①當(dāng)t>
3
5
時(shí),連接C′C,設(shè)四邊形ACC′A′的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
②當(dāng)線段A′C′與射線BB,有公共點(diǎn)時(shí),求t的取值范圍(寫出答案即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知圓O1與圓O2外切于點(diǎn)P,直線AB是兩圓的外公切線,分別與兩圓相切于A、B兩點(diǎn),AC是圓O1的直徑,過(guò)C作圓O2的切線,切點(diǎn)為D.
(Ⅰ)求證:C,P,B三點(diǎn)共線;
(Ⅱ)求證:CD=CA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,AB是⊙O的直徑,P在AB的延長(zhǎng)線上,PC切⊙O于C,PC=,BP=1,則⊙O半徑為(  )
A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本試卷共40分,考試時(shí)間30分鐘)
21.(選做題)本大題包括A,B,C,D共4小題,請(qǐng)從這4題中選做2小題. 每小題10分,共20分.請(qǐng)?jiān)诖痤}卡上準(zhǔn)確填涂題目標(biāo)記. 解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
A. 選修4-1:幾何證明選講
如圖,是邊長(zhǎng)為的正方形,以為圓心,為半徑的圓弧與以為直徑的半⊙O交于點(diǎn),延長(zhǎng)
(1)求證:的中點(diǎn);(2)求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,平行四邊形ABCD中,G是BC延長(zhǎng)線上一點(diǎn),AG與BD交于點(diǎn)E,與DC交于點(diǎn)F,則圖中相似三角形共有(  )
A.3對(duì)B.4對(duì)C.5對(duì)D.6對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

中,分別為上的點(diǎn),且,的面積是,梯形的面積為,則的值為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案