精英家教網 > 高中數學 > 題目詳情
若x>1,則當x+
4
x-1
取到最小值時,x=______.
y=(x-1)+
4
x-1
+1,
又有x>1,則x-1>0,
由基本不等式的性質,
可得y=(x-1)+
4
x-1
+1≥2
(x-1)×
4
x-1
+1=5,
當且僅當x=3時取等號
故答案為:3.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

15、設f(x)是定義在正整數集上的函數,且f(x)滿足:“當f(k)≥k2成立時,總可推出f(k+1)≥(k+1)2成立”.那么,下列命題總成立的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)是定義在正整數集上的函數,且f(x)滿足:“當f(k)≥k2成立時,總可推出f(k+1)≥(k+1)2成立”,那么,下列命題總成立的是( 。

查看答案和解析>>

科目:高中數學 來源:上海 題型:單選題

設f(x)是定義在正整數集上的函數,且f(x)滿足:“當f(k)≥k2成立時,總可推出f(k+1)≥(k+1)2成立”.那么,下列命題總成立的是( 。
A.若f(1)<1成立,則f(10)<100成立
B.若f(2)<4成立,則f(1)≥1成立
C.若f(3)≥9成立,則當k≥1時,均有f(k)≥k2成立
D.若f(4)≥25成立,則當k≥4時,均有f(k)≥k2成立

查看答案和解析>>

科目:高中數學 來源:2012年黑龍江省哈爾濱六中高考數學二模試卷(理科)(解析版) 題型:選擇題

設f(x)是定義在正整數集上的函數,且f(x)滿足:“當f(k)≥k2成立時,總可推出f(k+1)≥(k+1)2成立”.那么,下列命題總成立的是( )
A.若f(1)<1成立,則f(10)<100成立
B.若f(2)<4成立,則f(1)≥1成立
C.若f(3)≥9成立,則當k≥1時,均有f(k)≥k2成立
D.若f(4)≥25成立,則當k≥4時,均有f(k)≥k2成立

查看答案和解析>>

科目:高中數學 來源:2011年高考數學復習:6.7 數學歸納法2(理科)(解析版) 題型:選擇題

設f(x)是定義在正整數集上的函數,且f(x)滿足:“當f(k)≥k2成立時,總可推出f(k+1)≥(k+1)2成立”.那么,下列命題總成立的是( )
A.若f(1)<1成立,則f(10)<100成立
B.若f(2)<4成立,則f(1)≥1成立
C.若f(3)≥9成立,則當k≥1時,均有f(k)≥k2成立
D.若f(4)≥25成立,則當k≥4時,均有f(k)≥k2成立

查看答案和解析>>

同步練習冊答案