函數(shù)y=sin(2x-
π
3
)
的單調(diào)遞增區(qū)間是(  )
分析:令 2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
,k∈z,求得x的范圍,即可得到函數(shù)y=sin(2x-
π
3
)
的單調(diào)遞增區(qū)間.
解答:解:令 2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
,k∈z,求得  kπ-
π
12
≤x≤kπ+
12
,故函數(shù)y=sin(2x-
π
3
)
的增區(qū)間為 [kπ-
π
12
,kπ+
12
]
,k∈z,
故選A.
點(diǎn)評:本題主要考查求y=Asin(ωx+φ)的單調(diào)區(qū)間的方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=sin(2x+
π
6
)
的圖象,只需把函數(shù)y=sin2x的圖象( 。
A、向左平移
π
6
個長度單位
B、向右平移
π
6
個長度單位
C、向右平移
π
3
個長度單位
D、向左平移
π
12
個長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)給出下列四個命題:
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,則函數(shù)f(x)=x2+ax-3只有一個零點(diǎn);
③函數(shù)y=sin(2x-
π
3
)
的一個單調(diào)增區(qū)間是[-
π
12
12
]
;
④對于任意實(shí)數(shù)x,有f(-x)=f(x),且當(dāng)x>0時,f′(x)>0,則當(dāng)x<0時,f′(x)<0.
其中真命題的序號是
①③④
①③④
(把所有真命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(2x+
π
3
)
的圖象上的所有點(diǎn)向右平移
π
6
個單位,再將圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?span id="8nwphky" class="MathJye">
1
2
倍(縱坐標(biāo)不變),則所得的圖象的函數(shù)解析式為
y=sin4x
y=sin4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•棗莊一模)函數(shù)y=sin(2x+
π
3
)
的圖象可由y=cos2x的圖象經(jīng)過怎樣的變換得到( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=sin(2x+
3
)
的圖象,只需把函數(shù)y=sin2x的圖象上所有的點(diǎn)向左平移
π
3
π
3
個單位長度.

查看答案和解析>>

同步練習(xí)冊答案