已知集合M={x|2x≥1},N={x||x|≤2},則M∪N=( 。
A、[1,2]
B、[-2,+∞)
C、[0,2]
D、(0,2)
考點(diǎn):并集及其運(yùn)算
專題:集合
分析:求出M與N中不等式的解集確定出M與N,找出兩集合的并集即可.
解答: 解:由M中不等式變形得:2x≥1=20,得到x≥0,即M=[0,+∞),
由N中不等式解得:-2≤x≤2,即N=[-2,2],
則M∪N=[-2,+∞),
故選:B.
點(diǎn)評:此題考查了并集及其運(yùn)算,熟練掌握并集的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有4名優(yōu)秀大學(xué)畢業(yè)生被某公司錄用,該公司共有5個科室,由公司人事部門安排他們到其中任意3個科室上班,每個科室至少安排一人,則不同的安排方案種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:2log212-log29=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:實(shí)數(shù)m滿足m2+6a2<5am(a>0),命題q:實(shí)數(shù)m滿足方程
x2
m-1
+
y2
3-m
=1
表示焦點(diǎn)在y軸上的橢圓,若p是q的充分不必要條件,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:直線x-y+1=0的傾斜角為135°;命題q:直角坐標(biāo)平面內(nèi)的三點(diǎn)A(-1,-3),B(1,1),C(2,2)共線.則下列判斷正確的是( 。
A、?P為假B、q為真
C、?p∧?q為真D、p∨q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足不等式組
x+2y≤8
2x+y≤8
x≥0
y≥0
,則目標(biāo)函數(shù)z=3x+y的最大值為(  )
A、12
B、24
C、8
D、
32
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-2x+2+alnx(a∈R).
(1)討論f(x)的單調(diào)性;
(2)當(dāng)a∈(0,1)時,若m為f(x)的極小值點(diǎn),求證:0<f(m)
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
b
x
(a,b≠0,a,b∈R)
(1)當(dāng)b=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)b=a2時,若存在x0∈(0,e],使得f(x0)<0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a>0,c>0)的圖象與x軸有兩個不同的公共點(diǎn),且有f(c)=0,當(dāng)0<x<c時,恒有f(x)>0.
(1)當(dāng)a=1,c=
1
2
時,解不等式f(x)<0;
(2)若以二次函數(shù)的圖象與坐標(biāo)軸的三個交點(diǎn)為頂點(diǎn)的三角形的面積為8,求a的取值范圍;
(3)若f(0)=1,且f(x)≤m2-2km+1對所有x∈[0,c],k∈[-1,1]恒成立,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案