5.集合A={x|x>1},B={x|x<a},若A⊆CRB,則實(shí)數(shù)a的取值范圍(-∞,1].

分析 由A={x|x>1},B={x|x<a},得到CRB={x|x≥a},由此利用A⊆CRB,能求出實(shí)數(shù)a的取值范圍.

解答 解:∵集合A={x|x>1},B={x|x<a},
∴CRB={x|x≥a},
∵A⊆CRB,∴a≤1,
∴實(shí)數(shù)a的取值范圍是(-∞,1].
故答案為:(-∞,1].

點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,涉及到集合、不等式、補(bǔ)集、子集等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.對(duì)于0<a<1,給出下列四個(gè)不等式( 。
①loga(1+a)<loga(1+$\frac{1}{a}$)②loga(1+a)>loga(1+$\frac{1}{a}$); ③a1+a<a${\;}^{1+\frac{1}{a}}$;④a1+a>a${\;}^{1+\frac{1}{a}}$
其中成立的是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.$cos\sqrt{2},sin\sqrt{2},tan\sqrt{2}$的大小關(guān)系是( 。
A.$sin\sqrt{2}<cos\sqrt{2}<tan\sqrt{2}$B.$cos\sqrt{2}<sin\sqrt{2}<tan\sqrt{2}$C.$cos\sqrt{2}<tan\sqrt{2}<sin\sqrt{2}$D.$sin\sqrt{2}<tan\sqrt{2}<cos\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,某公園中間有一塊等腰梯形的綠化區(qū)ABCD,AB,CD的長(zhǎng)度相等,均為2百米,BC的長(zhǎng)度為4百米,其中BMN是半徑為1百米的扇形,$∠ABC=\frac{π}{3}$.管理部門欲在綠化區(qū)ABCD中修建從M到C的觀賞小路$\widehat{MP}-PQ-QC$;其中P為$\widehat{MN}$上異于M,N的一點(diǎn),小路PQ與BC平行,設(shè)∠PBC=θ.
(1)用θ表示PQ的長(zhǎng)度,并寫出θ的范圍;
(2)當(dāng)θ取何值時(shí),才能使得修建的觀賞小路$\widehat{MP}-PQ-QC$的總長(zhǎng)度最短?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)點(diǎn)$F({0,\frac{1}{4}})$,動(dòng)圓A經(jīng)過(guò)點(diǎn)F且和直線$y=-\frac{1}{4}$相切,記動(dòng)圓的圓心A的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)曲線C上一點(diǎn)P的橫坐標(biāo)為t(t>0),過(guò)P的直線交C于一點(diǎn)Q,交x軸于點(diǎn)M,過(guò)點(diǎn)Q作PQ的垂線交C于另一點(diǎn)N,若MN是C的切線,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=lnx-ax(a為常數(shù)).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a>0,求不等式f(x)-f($\frac{2}{a}$-x)>0的解集;
(Ⅲ)若存在兩個(gè)不相等的整數(shù)x1,x2滿足f(x1)=f(x2),求證:x1+x2>$\frac{2}{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下面與角$\frac{23π}{3}$終邊相同的角是( 。
A.$\frac{4}{3}π$B.$\frac{π}{3}$C.$\frac{5π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=|-2x+4|-|x+6|.
(1)求不等式f(x)≥0的解集;
(2)若f(x)>a+|x-2|存在實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)i是虛數(shù)單位,則$\frac{{{{({1+i})}^3}}}{{{{({1-i})}^2}}}$=-1-i.

查看答案和解析>>

同步練習(xí)冊(cè)答案