16.$cos\sqrt{2},sin\sqrt{2},tan\sqrt{2}$的大小關(guān)系是( 。
A.$sin\sqrt{2}<cos\sqrt{2}<tan\sqrt{2}$B.$cos\sqrt{2}<sin\sqrt{2}<tan\sqrt{2}$C.$cos\sqrt{2}<tan\sqrt{2}<sin\sqrt{2}$D.$sin\sqrt{2}<tan\sqrt{2}<cos\sqrt{2}$

分析 根據(jù)$\frac{π}{4}$<$\sqrt{2}$<$\frac{π}{2}$,結(jié)合正弦、余弦、正切函數(shù)在第一象限內(nèi)的單調(diào)性,
即可得出cos$\sqrt{2}$、sin$\sqrt{2}$和tan$\sqrt{2}$的大小.

解答 解:∵$\frac{π}{4}$<$\sqrt{2}$<$\frac{π}{2}$,
∴cos$\sqrt{2}$<sin$\sqrt{2}$<tan$\sqrt{2}$.
故選:B.

點評 本題考查了正弦、余弦、正切函數(shù)在第一象限內(nèi)的單調(diào)性問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知正項數(shù)列{an}滿足${a_{n+1}}({{a_{n+1}}-2{a_n}})=9-{a_n}^2$,若a1=1,則a10=(  )
A.27B.28C.26D.29

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C:x2+(y-4)2=4,直線l:(3m+1)x+(1-m)y-4=0
(Ⅰ)求直線l所過定點A的坐標(biāo);
(Ⅱ)求直線l被圓C所截得的弦長最短時m的值及最短弦長;
(Ⅲ)已知點M(-3,4),在直線MC上(C為圓心),存在定點N(異于點M),
滿足:對于圓C上任一點P,都有$\frac{|PM|}{|PN|}$為一常數(shù),試求所有滿足條件的點N的
坐標(biāo)及該常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若數(shù)列{an}的首項a1=2,且${S_{n+1}}=\frac{2}{3}{a_{n+1}}+\frac{1}{3}$(n∈z+),則數(shù)列{an}的通項公式是an=$\left\{\begin{array}{l}{2,n=1}\\{-5•(-2)^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知△ABC中,角A,B,C對應(yīng)的分別是a,b,c,若a=4,b=6,C=60°.
(1)求$\overrightarrow{BC}•\overrightarrow{CA}$;
(2)求$\overrightarrow{CA}$在$\overrightarrow{BC}$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列四個結(jié)論,正確的是( 。
①a>b,c<d⇒a-c>b-d
②a>b>0,c<d<0⇒ac>bd
 ③a>b>0⇒$\root{3}{a}$>$\root{3}$
④a>b>0⇒$\frac{1}{{a}^{2}}$>$\frac{1}{^{2}}$.
A.①②B.②③C.①③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=ax(a>1)與函數(shù)g(x)=x2圖象有三個不同的公共點,則實數(shù)a的取值范圍是(1,e${\;}^{\frac{2}{e}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.集合A={x|x>1},B={x|x<a},若A⊆CRB,則實數(shù)a的取值范圍(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知命題p:?x∈R,x2+2ax+a≤0.若命題p是假命題,則實數(shù)a的取值范圍是( 。
A.a<0或a>1B.a≤0或a≥1C.0≤a≤1D.0<a<1

查看答案和解析>>

同步練習(xí)冊答案