分析 (1)先求出圓C的標(biāo)準(zhǔn)式為:(x+$\frac{D}{2}$)2+(y+$\frac{E}{2}$)2=$\frac{{D}^{2}+{E}^{2}-4F}{4}$,圓心為(-$\frac{D}{2}$,-$\frac{E}{2}$),利用點(diǎn)到直線距離求出各參數(shù)即可;
(2)利用圓心與弦交點(diǎn)的三角形與點(diǎn)到直線距離來求弦長.
解答 解:(1)圓C的標(biāo)準(zhǔn)式為:(x+$\frac{D}{2}$)2+(y+$\frac{E}{2}$)2=$\frac{{D}^{2}+{E}^{2}-4F}{4}$,圓心為(-$\frac{D}{2}$,-$\frac{E}{2}$),
因?yàn)閳AC與y軸相切,即-$\frac{D}{2}$=-$\sqrt{2}$⇒D=2$\sqrt{2}$;
圓C與3x+4y=0相切,即d=$\frac{|3×(-\sqrt{2})+4×(-\frac{E}{2})|}{5}$=$\sqrt{2}$⇒E=-4$\sqrt{2}$,
即圓心為(-$\sqrt{2}$,2$\sqrt{2}$),
$\frac{{D}^{2}+{E}^{2}-4F}{4}$=2⇒F=8,
綜上:D=2$\sqrt{2}$,E=-4$\sqrt{2}$,F(xiàn)=8;
(2)由(1)知圓心(-$\sqrt{2}$,2$\sqrt{2}$),R=$\sqrt{2}$,
由點(diǎn)到直線距離知d=$\frac{|-\sqrt{2}-2\sqrt{2}+2\sqrt{2}|}{\sqrt{2}}$=1,
所以$\frac{|AB|}{2}$=$\sqrt{(\sqrt{2})^{2}-{1}^{2}}$=1,
故|AB|=2.
點(diǎn)評(píng) 本題主要考查了圓的標(biāo)準(zhǔn)方程,圓與直線相切以及點(diǎn)到直線的距離等知識(shí)點(diǎn),屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com