【題目】已知函數(shù),若的圖象上相鄰兩條對(duì)稱軸的距離為,圖象過(guò)點(diǎn).

1)求的表達(dá)式和的遞增區(qū)間;

2)將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象.若函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】1的遞增區(qū)間為,.(2

【解析】

1)由兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù),相鄰兩條對(duì)稱軸的距離為,可得周期,從而得,再代入坐標(biāo)

(2)由三角函數(shù)圖象變換得,題意轉(zhuǎn)化為的圖象與直線上只有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象易得結(jié)論.

1,

的最小正周期為,∴.

的圖象過(guò)點(diǎn),∴,∴,

.

,,,,

的遞增區(qū)間為,.

2)將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,可得的圖象,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象.

,∴,∴,故在區(qū)間上的值域?yàn)?/span>.

若函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn),

即函數(shù)的圖象和直線只有一個(gè)公共點(diǎn),

如圖,

根據(jù)圖象可知,,即.

故實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3+2S677a10a510.

1)求數(shù)列{an}的通項(xiàng)公式;

2)數(shù)列{bn}滿足:b11,bnbn1ann+1n≥2),求數(shù)列{}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為拋物線上的兩個(gè)不同的點(diǎn),且線段的中點(diǎn)在直線上,當(dāng)點(diǎn)的縱坐標(biāo)為1時(shí),點(diǎn)的橫坐標(biāo)為.

1)求拋物線的標(biāo)準(zhǔn)方程;

2)若點(diǎn)軸兩側(cè),拋物線的準(zhǔn)線與軸交于點(diǎn),直線的斜率分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,一條斜率為的直線分別交軸于點(diǎn),交橢圓于點(diǎn),且點(diǎn)三等分

1)求該橢圓的方程;

2)若是第一象限內(nèi)橢圓上的點(diǎn),其橫坐標(biāo)為2,過(guò)點(diǎn)的兩條不同的直線分別交橢圓于點(diǎn),且直線的斜率之積,求證:直線恒過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,過(guò)點(diǎn)作橢圓C的切線l,在第一象限的切點(diǎn)為P,過(guò)點(diǎn)P作與直線l傾斜角互補(bǔ)的直線,恰好經(jīng)過(guò)橢圓C的下頂點(diǎn)N.

1)求橢圓C的方程;

2F為橢圓C的右焦點(diǎn),過(guò)點(diǎn)F且與x軸不垂直的直線交橢圓CA,B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為,則直線是否過(guò)定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和滿足,為常數(shù),,且),,,若存在正整數(shù),使得成立;數(shù)列是首項(xiàng)為2,公差為的等差數(shù)列,為其前項(xiàng)和,則以下結(jié)論正確的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,橢圓的離心率為,過(guò)點(diǎn)作直線交橢圓于不同兩點(diǎn),

1)求橢園的方程;

2)①設(shè)直線的斜率為,求出與直線平行且與橢圓相切的直線方程(用表示);

②若,為橢圓上的動(dòng)點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】回文數(shù)指從左向右讀與從右向左讀都一樣的正整數(shù),如22343,1221,94249等.顯然兩位回文數(shù)有9個(gè),即11,22,33,99;三位回文數(shù)有90個(gè),即101,121,131,…,191202,…,999.則四位回文數(shù)有______個(gè),位回文數(shù)有______個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為是參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸

為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)在曲線上,曲線在點(diǎn)處的切線與直線垂直,求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案