【題目】已知橢圓,過點作橢圓C的切線l,在第一象限的切點為P,過點P作與直線l傾斜角互補的直線,恰好經(jīng)過橢圓C的下頂點N.

1)求橢圓C的方程;

2F為橢圓C的右焦點,過點F且與x軸不垂直的直線交橢圓CAB兩點,點A關(guān)于x軸的對稱點為,則直線是否過定點,若是,求出定點坐標;若不是,請說明理由.

【答案】12過定點.

【解析】

1)設(shè)出直線l的方程,聯(lián)立直線與橢圓方程,利用相切得到根的判別式為0,進而得到切點坐標,再根據(jù)兩直線傾斜角之間的關(guān)系,得到b的值,從而得橢圓C的方程;(2)設(shè)出直線的方程,聯(lián)立直線與橢圓方程,設(shè)出,,可得,坐標,寫出直線的方程,化簡,根據(jù)方程的特點,即得過定點.

解:(1)由題意可知直線l的斜率存在且不為0,設(shè)直線l的方程為,與橢圓方程聯(lián)立,得,化簡整理得,(*

,得,

所以方程(*)可化為,可得切點.

,由已知,

所以,即,得,

所以橢圓C的方程為.

2)由(1)知,

設(shè)直線的方程為,與橢圓方程聯(lián)立,得,化簡整理得,

設(shè),,則.

,可得,則

的方程為,

所以當時,,即過定點.

拓展結(jié)論:

上點處的切線方程為,而若點在圓外,則直線方程的幾何含義是過點所作圓的兩條切線的切點連線的方程;由此類比:橢圓上點處的切線方程為,而若點在橢圓外,則方程的幾何含義是過點所作橢圓的兩條切線的切點連線的方程;拋物線上點處的切線方程為,而若點在拋物線外,則直線方程的幾何含義是過點所作拋物線的兩條切線的切點連線的方程.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上單調(diào),且函數(shù)的圖象關(guān)于直線對稱,若數(shù)列是公差不為0的等差數(shù)列,且,則的前100項的和為( )

A. 300B. 100C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知拋物線的準線方程為

1)求p的值;

2)過拋物線C的焦點的直線l交拋物線C于點A,B,交拋物線C的準線于點P,若A為線段PB的中點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)在所給的坐標紙上作出函數(shù)的圖像(不要求寫出作圖過程);

2)令, 求函數(shù)的定義域及不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是函數(shù)的部分圖象,把函數(shù)的圖象上所有點的橫坐標變?yōu)樵瓉淼?/span>2倍(縱坐標不變),再把所得圖象向左平移個單位長度,得到函數(shù)的圖象,則下列說法正確的是(

A.函數(shù)是偶函數(shù)

B.函數(shù)圖象的對稱軸為直線

C.函數(shù)的單調(diào)遞增區(qū)間為

D.函數(shù)圖象的對稱中心為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若的圖象上相鄰兩條對稱軸的距離為,圖象過點.

1)求的表達式和的遞增區(qū)間;

2)將函數(shù)的圖象向右平移個單位長度,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象.若函數(shù)在區(qū)間上有且只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】抖音是一款音樂創(chuàng)意短視頻社交軟件,是一個專注年輕人的15秒音樂短視頻社區(qū),用戶可以通過這款軟件選擇歌曲,拍攝15秒的音樂短視頻,形成自己的作品.20186月首批25家央企集體入駐抖音,一調(diào)研員在某單位進行刷抖音時間的調(diào)查,若該單位甲、乙、丙三個部門的員工人數(shù)分別為2416,16.現(xiàn)采用分層抽樣的方法從中抽取7人.

1)應從甲、乙、丙三個部門的員工中分別抽取多少人?

2)若抽出的7人中有3人是抖音迷,4人為非抖音迷,現(xiàn)從這7人中隨機抽取3人做進一步的詳細登記.

①用表示抽取的3人中是抖音迷的員工人數(shù),求隨機變量的分布列與數(shù)學期望;

②設(shè)為事件“抽取的3人中,既有是抖音迷的員工,也有非抖音迷的員工’’,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求的單調(diào)區(qū)間;

2)若曲線與直線有且只有一個公共點,求證:.(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求函數(shù)的單調(diào)區(qū)間和極值;

2)若上是單調(diào)增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案