【題目】已知雙曲線:,,為左,右焦點,直線過右焦點,與雙曲線的右焦點交于,兩點,且點在軸上方,若,則直線的斜率為( )
A. B. C. D.
【答案】D
【解析】
由|AF2|=3|BF2|,可得.設直線l的方程x=my+,m>0,設,,即y1=﹣3y2①,聯立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.
雙曲線C:,F1,F2為左、右焦點,則F2(,0),設直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,
設A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①
由,得
∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,
∴y1+y2=②,y1y2=③,
聯立①②得,聯立①③得,
,即:,,解得:,直線的斜率為,
故選:D.
科目:高中數學 來源: 題型:
【題目】甲、乙兩人輪流吹同一只氣球,當且僅當氣球內的氣體體積(單位:毫升)大于2014時,氣球會被吹破.先由甲開始吹入1毫升氣體,約定以后每次吹入的氣體體積為上一次體積的2倍或,且吹入的氣體體積為整數.
(1)若誰先吹破氣球誰輸,問誰有必勝策略?證明你的結論.
(2)若在不吹破氣球的前提下,約定單次吹入的氣體體積最大者為贏家(如果吹入的體積相同,則最先吹出最大體積者為贏家).問:誰有必勝策略?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,是邊長,的矩形硬紙片,在硬紙片的四角切去邊長相等的小正方形后,再沿虛線折起,做成一個無蓋的長方體盒子,、是上被切去的小正方形的兩個頂點,設.
(1)將長方體盒子體積表示成的函數關系式,并求其定義域;
(2)當為何值時,此長方體盒子體積最大?并求出最大體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為支援武漢的防疫,某醫(yī)院職工踴躍報名,其中報名的醫(yī)生18人,護士12人,醫(yī)技6人,根據需要,從中抽取一個容量為n的樣本參加救援隊,若采用系統抽樣和分層抽樣,均不用剔除人員.當抽取n+1人時,若采用系統抽樣,則需剔除1個報名人員,則抽取的救援人員為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年,新冠狀肺炎疫情牽動每一個中國人的心,危難時刻眾志成城,共克時艱,為疫區(qū)助力.福建省漳州市東山縣共101個海鮮商家及個人為緩解武漢物質壓力,募捐價值百萬的海鮮輸送武漢.東山島,別稱陵島,形似蝴蝶亦稱蝶島,隸屬于福建省漳州市東山縣,是福建省第二大島,中國第七大島,介于廈門市和廣東省汕頭之間,東南是著名的閩南漁場和粵東漁場交匯處,因地理位置發(fā)展海產品養(yǎng)殖業(yè)具有得天獨厚的優(yōu)勢.根據養(yǎng)殖規(guī)模與以往的養(yǎng)殖經驗,某海鮮商家的海產品每只質量(克)在正常環(huán)境下服從正態(tài)分布.
(1)隨機購買10只該商家的海產品,求至少買到一只質量小于265克該海產品的概率;
(2)2020年該商家考慮增加先進養(yǎng)殖技術投入,該商家欲預測先進養(yǎng)殖技術投入為49千元時的年收益增量.現用以往的先進養(yǎng)殖技術投入(千元)與年收益增量(千元).的數據繪制散點圖,由散點圖的樣本點分布,可以認為樣本點集中在曲線的附近,且,,其中.根據所給的統計量,求y關于x的回歸方程,并預測先進養(yǎng)殖技術投入為49千元時的年收益增量.
附:若隨機變量,則;
對于一組數據,其回歸線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的直角坐標方程;
(2)已知點,直線與曲線交于兩點,且,求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com