精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,是邊長的矩形硬紙片,在硬紙片的四角切去邊長相等的小正方形后,再沿虛線折起,做成一個無蓋的長方體盒子,、上被切去的小正方形的兩個頂點,設.

1)將長方體盒子體積表示成的函數關系式,并求其定義域;

2)當為何值時,此長方體盒子體積最大?并求出最大體積.

【答案】1,;(2)當時長方體盒子體積最大,此時最大體積為.

【解析】

1)分別由題意用x表示長方體的長寬高,代入長方體的體積公式即可表示該函數關系,再由實際長方體的長寬高都應大于零構建不等式組,即可求得定義域.

2)利用導數分析體積在定義域范圍內的單調性,進而求函數的最大值.

長方體盒子長,寬,高.

1)長方體盒子體積,

,故定義域為.

2)由(1)可知長方體盒子體積

,在內令,解得,故體積V在該區(qū)間單調遞增;

,解得,故體積V在該區(qū)間單調遞減;

取得極大值也是最大值.此時.

故當時長方體盒子體積最大,此時最大體積為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】給出下列四個命題:

三個球全部放入兩個盒子,其中必有一個盒子有一個以上的球是必然事件

為某一實數時可使是不可能事件

明天全天要下雨是必然事件

100個燈泡(6個是次品)中取出5個,5個都是次品是隨機事件.

其中正確命題的個數是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為響應“文化強國建設”號召,并增加學生們對古典文學的學習興趣,雅禮中學計劃建設一個古典文學熏陶室.為了解學生閱讀需求,隨機抽取200名學生做統(tǒng)計調查.統(tǒng)計顯示,男生喜歡閱讀古典文學的有64人,不喜歡的有56人;女生喜歡閱讀古典文學的有36人,不喜歡的有44.

(1)能否在犯錯誤的概率不超過0.25的前提下認為喜歡閱讀古典文學與性別有關系?

(2)為引導學生積極參與閱讀古典文學書籍,語文教研組計劃牽頭舉辦雅禮教育集團古典文學閱讀交流會.經過綜合考慮與對比,語文教研組已經從這200人中篩選出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜歡古典文學.現從這9名代表中任選3名男生代表和2名女生代表參加交流會,記為參加交流會的5人中喜歡古典文學的人數,求的分布列及數學期望.

附:,其中.

參考數據:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐PABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC60°,EF分別是BC,PC的中點.

(I)證明:AEPD;

(II)ABPA2,

①求異面直線PBAD所成角的正弦值;

②求二面角EAFC的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,為測得河對岸塔的高,先在河岸上選一點,使在塔底的正東方向上,測得點的仰角為60°,再由點沿北偏東15°方向走到位置,測得,則塔的高是(單位:)( )

A. B. C. D. 10

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線,,為左,右焦點,直線過右焦點,與雙曲線的右焦點交于兩點,且點軸上方,若,則直線的斜率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-5:不等式選講

已知f(x)=|x+a|(a∈R).

(1)若f(x)≥|2x﹣1|的解集為[0,2],求a的值;

(2)若對任意x∈R,不等式f(x)+|x﹣a|≥3a﹣2恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是連續(xù)的偶函數,且時, 是單調函數,則滿足的所有之積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校2011年到2019年參加北約”“華約考試而獲得加分的學生人數(每位學生只能參加北約”“華約中的一種考試)可以通過以下表格反映出來.(為了方便計算,將2011年編號為1,2012年編號為2,依此類推)

年份x

1

2

3

4

5

6

7

8

9

人數y

2

3

5

4

5

7

8

10

10

1)求這九年來,該校參加北約”“華約考試而獲得加分的學生人數的平均數和方差;

2)根據最近五年的數據,利用最小二乘法求出yx的線性回歸方程,并依此預測該校2020年參加北約”“華約考試而獲得加分的學生人數.(最終結果精確至個位)

參考數據:回歸直線的方程是,其中,

查看答案和解析>>

同步練習冊答案