解:(I)設(shè)圓的方程為:(x-1)
2+(y-1)
2=r
2因?yàn)閳A心C到直線l的距離:d=
=
,(2分)
所以:r
2=
+
=1,即r=1,
圓的方程為:(x-1)
2+(y-1)
2=1;(5分)
(II)當(dāng)切線的斜率不存在時(shí),顯然x=2為圓的一條切線;(7分)
當(dāng)切線的斜率存在時(shí),設(shè)切線的斜率為k,
則切線方程為y-3=k(x-2),即:kx-y-2k+3=0
由
=1,解得k=
,(10分)
所以切線方程為y-3=
(x-2),即3x-4y+6=0
綜上:所求的切線方程為x=2和3x-4y=6=0.(12分)
分析:(I)設(shè)圓C的半徑為r,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程,利用點(diǎn)到直線的距離公式求出圓心到直線l的距離即為弦心距,然后根據(jù)垂徑定理得到其垂足為弦的中點(diǎn),由弦長(zhǎng)的一半,圓心距及半徑構(gòu)成的直角三角形,根據(jù)勾股定理列出關(guān)于r的方程,求出方程的解即可得到r的值,從而確定圓C的方程;
(II)當(dāng)切線方程的斜率不存在時(shí),顯然得到x=2為圓的切線;當(dāng)切線方程的斜率存在時(shí),設(shè)出切線的斜率為k,由P的坐標(biāo)和k寫出切線方程,利用點(diǎn)到直線的距離公式求出圓心到所設(shè)直線的距離d,根據(jù)直線與圓相切,得到d等于圓的半徑,列出關(guān)于k的方程,求出方程的解即可得到k的值,從而確定出切線的方程,綜上,得到所求圓的兩條切線方程.
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,以及直線與圓相交的性質(zhì).要求學(xué)生掌握垂徑定理,勾股定理及點(diǎn)到直線的距離公式,理解直線與圓相切時(shí)圓心到直線的距離等于圓的半徑.