給出下列五個(gè)結(jié)論:
①若集合A={x∈R|0≤x≤1},B={x∈N|lgx<1},則A∩B={1};
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是數(shù)學(xué)公式;
③若△ABC的內(nèi)角A滿足數(shù)學(xué)公式,則數(shù)學(xué)公式;
④函數(shù)f(x)=|sinx|的零點(diǎn)為kπ(k∈Z).
⑤若2弧度的圓心角所對(duì)的弧長(zhǎng)為4cm,則這個(gè)圓心角所在扇形的面積為2cm2
其中,結(jié)論正確的是________.(將所有正確結(jié)論的序號(hào)都寫(xiě)上)

①④
分析:①將集合B用列舉法表示,利用交集的定義易得①正確;②兩直線垂直的充要條件為a+3b=0,故可用舉反例法排除②;③只需根據(jù)題意縮小角A的范圍,即可判斷所求值一定大于零,排除③;④解三角方程即可得其零點(diǎn);⑤利用弧長(zhǎng)公式計(jì)算扇形半徑,利用扇形面積公式計(jì)算此扇形面積即可
解答:①∵A=[0,1],B={1,2,3,4,5,6,7,8,9},∴A∩B={1},①正確;
②當(dāng)a=0,b=0時(shí),兩直線垂直,但無(wú)意義,②錯(cuò)誤;
③∵A∈(0,π),∴sinA>0,又∵>0,∴cosA>0,∴A∈(0,),∴sinA+cosA>0,不可能等于,③錯(cuò)誤;
④∵f(x)=|sinx|=0?sinx=0?x=kπ,(k∈Z),∴函數(shù)f(x)=|sinx|的零點(diǎn)為kπ(k∈Z),④正確;
⑤∵弧長(zhǎng)l=|α|×r,∴4=2×r,∴此圓半徑r=2,∵扇形的面積s=lr,∴這個(gè)圓心角所在扇形的面積為×4×2=4cm2.⑤錯(cuò)誤;
故答案為 ①④
點(diǎn)評(píng):本題綜合考查了集合的表示方法及其運(yùn)算,兩直線的位置關(guān)系與直線方程,三角形中的三角函數(shù)值的計(jì)算,正弦函數(shù)的零點(diǎn)及弧度制下的弧長(zhǎng)和扇形面積的計(jì)算公式等基礎(chǔ)知識(shí)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)結(jié)論:
①?x∈R,2x>x2
②“若x2<1,則-1<x<1”的逆否命題是“若-1<x<1,則x2≥1”;
③要得到y(tǒng)=cos2x的圖象,只需要將y=sin(2x+
π
4
)的圖象向左平移
π
8
個(gè)單位;
④在△ABC中,若
AB
CA
>0,則∠A為銳角;
⑤函數(shù)f(x)=sin(2x+
π
3
)在[0,
π
12
]上是增函數(shù),在[
π
12
,
π
2
]上是減函數(shù).
其中正確結(jié)論的序號(hào)是
③⑤
③⑤
.(填寫(xiě)你認(rèn)為正確的所有結(jié)論序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)max{sinx,cosx}表示sinx與cosx中的較大者.若函數(shù)f(x)=max{sinx,cosx},給出下列五個(gè)結(jié)論:
①當(dāng)且僅當(dāng)x=2kπ+π(π∈Z)時(shí),f(x)取得最小值;
②f(x)是周期函數(shù);
③f(x)的值域是[-1,1];
④當(dāng)且僅當(dāng)<x<2kx+
2
(k∈Z)時(shí),f(x)<0;
⑤f(x)以直線x=kx+
π
4
(k∈Z)為對(duì)稱軸.
其中正確結(jié)論的序號(hào)為
②④⑤
②④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)結(jié)論:
①函數(shù)y=2sin(2x-
π
3
)
有一條對(duì)稱軸是x=
12
;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)(
π
2
,0)對(duì)稱;
③正弦函數(shù)在第一象限為增函數(shù);
④要得到y=3sin(2x+
π
4
)
的圖象,只需將y=3sin2x的圖象左移
π
4
個(gè)單位;
⑤若sin(2x1-
π
4
)=sin(2x2-
π
4
)
,則x1-x2=kπ,其中k∈Z;
其中正確的有
①②
①②
.(填寫(xiě)正確結(jié)論前面的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)結(jié)論:
①若集合A={x∈R|0≤x≤1},B={x∈N|lgx<1},則A∩B={1};
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是
a
b
=-3

③若△ABC的內(nèi)角A滿足sinAcosA=
1
3
,則sinA+cosA=±
15
3
;
④函數(shù)f(x)=|sinx|的零點(diǎn)為kπ(k∈Z).
⑤若2弧度的圓心角所對(duì)的弧長(zhǎng)為4cm,則這個(gè)圓心角所在扇形的面積為2cm2
其中,結(jié)論正確的是
①④
①④
.(將所有正確結(jié)論的序號(hào)都寫(xiě)上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)結(jié)論其中正確的是( 。
①若實(shí)數(shù)x,y滿足(x-2)2+y2=3,則
y
x
的最大值為
3
;②橢圓
x2
4
+
y2
3
=1
與橢圓
x2
2
+
2y2
3
=1
有相同的離心率;③雙曲線
x2
2-k
+
y2
3-k
=1
的焦點(diǎn)坐標(biāo)是(1,0),(-1,0)④圓x2+y2=1與直線y=kx+2沒(méi)有 公共點(diǎn)的充要條件是k∈(-
3
3
)
⑤設(shè)a>1,則雙曲線
x2
a2
-
y2
(a+1)2
=1
的離心率e的取值范圍是(
2
5
)

查看答案和解析>>

同步練習(xí)冊(cè)答案