【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對價(jià)格(單位:千元/噸)和利潤的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如下表:
已知和具有線性相關(guān)關(guān)系
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少噸時(shí),年利潤取到最大值?(保留一位小數(shù))
參考數(shù)據(jù)及公式: ,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程是 (t為參數(shù)),以射線ox為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是 +ρ2sin2θ=1.
(1)求曲線C的直角坐標(biāo)方程;
(2)求直線l與曲線C相交所得的弦AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店統(tǒng)計(jì)了連續(xù)三天售出商品的種類情況:第一天售出19種商品,第二天售出13種商品,第三天售出18種商品;前兩天都售出的商品有3種,后兩天都售出的商品有4種,則該網(wǎng)店
①第一天售出但第二天未售出的商品有______種;
②這三天售出的商品最少有_______種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)y=f(x)的圖象關(guān)于點(diǎn) 成中心對稱,對任意的實(shí)數(shù)x都有f(x)=﹣f(x+ ),且f(﹣1)=1,f(0)=﹣2,則f(1)+f(2)+f(3)+…+f(2014)的值為( )
A.2
B.1
C.﹣1
D.﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)f(x)=4x2-2(t-2)x-2t2-t+1在區(qū)間[-1,1]內(nèi)至少存在一個(gè)值m,使得f(m)>0,則實(shí)數(shù)t的取值范圍( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣|x|+2a﹣1(a為實(shí)常數(shù)).
(1)若a=1,求f(x)=3的解;
(2)求f(x)在區(qū)間[1,2]的最小值為g(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的定義域?yàn)镽,且滿足
(1)f(1)=3
(2)對于任意的,總有
(3)對于任意的
(I)求f(0)及f(-1)的值
(II)求證:函數(shù)y=f(x)-1為奇函數(shù)
(III)若,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 若對任意的正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱{an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項(xiàng)和為Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設(shè){an}是等差數(shù)列,其首項(xiàng)a1=1,公差d<0,若{an}是“H數(shù)列”,求d的值;
(3)證明:對任意的等差數(shù)列{an},總存在兩個(gè)“H數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com