A. | (-∞,0) | B. | (0,+∞) | C. | (1,+∞) | D. | (4,+∞) |
分析 令g(x)=$\frac{f(x)}{{e}^{x}}$,利用導數(shù)和已知即可得出其單調性.再利用函數(shù)的對稱性和已知可得g(0)=1,從而求得不等式f(x)>ex的解集.
解答 解:設g(x)=$\frac{f(x)}{{e}^{x}}$,則g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$.
∵f′(x)<f(x),∴g′(x)<0.∴函數(shù)g(x)是R上的減函數(shù),
∵函數(shù)f(x+3)是偶函數(shù),
∴函數(shù)f(-x+3)=f(x+3),∴函數(shù)關于x=3對稱,∴f(0)=f(6)=1,
原不等式等價為g(x)>1,∴不等式f(x)<ex等價g(x)>1,即g(x)>g(0),
∵g(x)在R上單調遞減,∴x<0.
∴不等式f(x)>ex的解集為(-∞,0).
故選:A
點評 本題考查了利用導數(shù)研究函數(shù)的單調性、利用函數(shù)的單調性求解不等式,體現(xiàn)了數(shù)學轉化思想方法,屬于中檔題
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 512 | B. | 256 | C. | 255 | D. | 64 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{9}{10}$ | B. | $\frac{15}{32}$ | C. | $\frac{9}{32}$ | D. | $\frac{7}{32}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{2}{5}+\frac{4}{5}$i | B. | $\frac{2}{5}+\frac{4}{5}$i | C. | $\frac{2}{5}-\frac{4}{5}$i | D. | -$\frac{2}{5}-\frac{4}{5}$i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $-\sqrt{2}$ | C. | ±1 | D. | $±\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{1}{2}$,$\sqrt{3}$] | B. | [1,$\sqrt{3}$] | C. | (-1,$\sqrt{3}$] | D. | (-1,$\frac{\sqrt{3}}{2}$] |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com