已知等比數(shù)列的各項(xiàng)均為正數(shù),且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.

(1);(2)數(shù)列的前項(xiàng)和為.

解析試題分析:(1)先用等比數(shù)列的性質(zhì)化簡(jiǎn)得到公比,然后用首項(xiàng)與公比表示,可得,從而求出,最后利用等比數(shù)列的通項(xiàng)公式寫出通項(xiàng)公式即可;(2)由(1)先求出,從而再利用等差數(shù)列的前項(xiàng)和公式求出,從而,最后采用裂項(xiàng)相消法求和即可得到數(shù)列的前項(xiàng)和.
試題解析:(1)設(shè)等比數(shù)列的公比為,由       1分
,由已知                   3分
,                    5分
數(shù)列的通項(xiàng)公式為                     6分
(2)  9分
                    10分

數(shù)列的前項(xiàng)和為                  12分.
考點(diǎn):1.等比數(shù)列的通項(xiàng)公式與性質(zhì);2.等差數(shù)列的前項(xiàng)和公式;3.數(shù)列求和的問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+S2=12,q=.
(1)求an與bn.
(2)證明:++…+<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}滿足a2=0,a6a8=-10.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N*,都有+…+,記Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=3n+(-1)n-1λ·2an(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對(duì)任意n∈N*,都有bn+1>bn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,,是數(shù)列 的前項(xiàng)和.
(1)若數(shù)列為等差數(shù)列.
①求數(shù)列的通項(xiàng);
②若數(shù)列滿足,數(shù)列滿足,試比較數(shù)列 前項(xiàng)和項(xiàng)和的大;
(2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,滿足恰好是等比數(shù)列的前三項(xiàng).
(Ⅰ)求數(shù)列、的通項(xiàng)公式;
(Ⅱ)記數(shù)列的前項(xiàng)和為,若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

ABC中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別為,且A,B,C成等差數(shù)列,成等比數(shù)列,求證ABC為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列,滿足,
(1)已知,求數(shù)列所滿足的通項(xiàng)公式;
(2)求數(shù)列 的通項(xiàng)公式;
(3)己知,設(shè),常數(shù),若數(shù)列是等差數(shù)列,記,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足:.
(1)求的通項(xiàng)公式;
(2)若(),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案