如圖甲所示,在正方形ABCD中,EF分別是BC、CD的中點(diǎn),G是EF的中點(diǎn),現(xiàn)在沿AE、AF及EF把這個(gè)正方形折成一個(gè)四面體,使B、C、D三點(diǎn)重合,重合后的點(diǎn)記為H,如圖乙所示,那么,在四面體A-EFH中必有( 。
A、AH⊥△EFH所在平面
B、AG⊥△EFH所在平面
C、HF⊥△AEF所在平面
D、HG⊥△AEF所在平面
考點(diǎn):直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:本題為折疊問題,分析折疊前與折疊后位置關(guān)系、幾何量的變與不變,可得HA、HE、HF三者相互垂直,根據(jù)線面垂直的判定定理,可判斷AH與平面HEF的垂直.
解答: 解:根據(jù)折疊前、后AH⊥HE,AH⊥HF不變,∴AH⊥平面EFH,A正確;
∵過A只有一條直線與平面EFH垂直,∴B不正確;
∵AG⊥EF,EF⊥AH,∴EF⊥平面HAG,∴平面HAG⊥AEF,過H作直線垂直于平面AEF,一定在平面HAG內(nèi),
∴C不正確;
∵HG不垂直于AG,∴HG⊥平面AEF不正確,D不正確.
故選:A.
點(diǎn)評(píng):本題考查直線與平面垂直的判定,一般利用線線?線面?面面,垂直關(guān)系的相互轉(zhuǎn)化判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊a,b,c成等比數(shù)列,則
sinA+cosA•tanC
sinB+cosB•tanC
的取值范圍是( 。
A、(0,+∞)
B、(0,
5
+1
2
C、(
5
-1
2
,+∞)
D、(
5
-1
2
,
5
+1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正方體ABCD-A1B1C1D1中,異面直線A1B與AD1所成角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知矩形ABCD,P為平面ABCD外一點(diǎn),且PA⊥面ABCD,M、N分別為PC,PD上的點(diǎn),且PM:MC=2:1,N為PD的中點(diǎn),則滿足
MN
=x
AB
+y
AD
+z
AP
的實(shí)x=
 
,y=
 
,z=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求y=(sinx+
2
)(cosx+
2
),x∈[0,
π
2
]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱錐P-ABC的四個(gè)頂點(diǎn)均在同一球面上,其中△ABC為等邊三角形,PA⊥平面ABC,PA=2AB=2a,則該球的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若AB=4,BC=2
2
,且
BA
BC
=-8,則AC等于( 。
A、4
2
B、4
C、2
2
D、2
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P是橢圓
x2
25
+
y2
9
=1上一點(diǎn),F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn),△PF1F2的內(nèi)切圓的半徑為1,則|
PF1
+
PF2
|的值為( 。
A、8
B、4
3
C、4
D、
25
4
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等邊三角形ABC的邊長(zhǎng)為3,點(diǎn)D、E分別是邊AB、AC上的點(diǎn),且滿足
AD
DB
=
CE
EA
=
1
2
(如圖1).將△ADE沿DE折起到△A1DE的位置,使二面角A1-DE-B為直二面角,連結(jié)A1B、A1C (如圖2).
(Ⅰ)求證:A1D⊥平面BCED;
(Ⅱ)若P是線段BC上的點(diǎn),且三棱錐D-A1EP的體積為
3
6
,求BP長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案