正方體ABCD-A1B1C1D1中,異面直線A1B與AD1所成角的大小為
 
考點:異面直線及其所成的角
專題:計算題,空間位置關系與距離
分析:連接BC1,證明∠A1BC1為異面直線A1B和直線AD1所成的角,在△A1BC1中求∠A1BC1
解答: 解:連接A1C1,BC1,∵AD1∥BC1,∴∠A1BC1為異面直線A1B和直線AD1所成的角,
∵在正方體ABCD-A1B1C1D1中,設棱長為1,則A1C1=BC1=BA1=
2
,
∴△A1BC1為等邊三角形,∴∠A1BC1=60°
故答案是60°.
點評:本題主要考查了空間兩異面直線及其所成的角的求法,根據(jù)異面直線所成角的定義,尋找平行線是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+4x+3a,f(bx)=16x2-16x+9,其中x∈R,a,b為常數(shù),則方程f(ax+b)=0的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且an是Sn與1的等差中項,數(shù)列{bn}中,b1=2,點P(bn,bn+1)在直線y=x+2上.
(1)求證:數(shù)列{an}是等比數(shù)列,并求通項公式;
(2)求數(shù)列{bn}的通項bn
(3)設cn=an•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的上、下兩個頂點為A,B,直線l:y=-2,
點P是橢圓上異于點A、B的任意一點,連接AP并延長交直線l于點N,連接PB并延長交直線l于點M,設AP所在的直線的斜率為k1,BP所在的直線的斜率為k2,若橢圓的離心率為
3
2
,且過點A(0,1).
(1)求k1•k2的值及線段MN的最小值;
(2)隨著點P的變化,以MN為直徑的圓是否恒過定點?若過定點,求出該定點;如不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是各棱長均相等的正四棱錐表面展開圖,T為QS的中點,則在四棱錐中PQ與RT所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系下,圓 ρ=2cosθ 與圓 ρ=2的公切線條數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明,若f(n)=1+
1
2
+
1
3
+…+
1
n
,則n+f(1)+f(2)+…+f(n-1)=n•f(n)(n≥2,且n∈N+).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖甲所示,在正方形ABCD中,EF分別是BC、CD的中點,G是EF的中點,現(xiàn)在沿AE、AF及EF把這個正方形折成一個四面體,使B、C、D三點重合,重合后的點記為H,如圖乙所示,那么,在四面體A-EFH中必有( 。
A、AH⊥△EFH所在平面
B、AG⊥△EFH所在平面
C、HF⊥△AEF所在平面
D、HG⊥△AEF所在平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,D、E分別是BC和CC1的中點,已知AB=AC=AA1=4,∠BAC=90°.
(1)求證:B1D⊥平面AED;
(2)求二面角B1-AE-D的余弦值;
(3)求三棱錐A-B1DE的體積.

查看答案和解析>>

同步練習冊答案