如圖,在三棱錐A-BCD中,△ABD和△BCD是兩個全等的等腰直角三角形,O為BD的中點,且AB=AD=CB=CD=2,AC=

(1)當時,求證:AO⊥平面BCD;
(2)當二面角的大小為時,求二面角的正切值.

(1)先證 AO⊥CO, AO⊥BD   (2)

解析試題分析:(1)根據(jù)題意知,在△AOC中,,,
所以,所以AO⊥CO.
因為AO是等腰直角E角形ABD的中線,所以AO⊥BD.
又BDCO=O,所以AO⊥平面BCD.
(2)法一 由題易知,CO⊥OD.如圖,以O(shè)為原點,
OC、OD所在的直線分別為軸、軸建立如圖所示的空間直角坐標系
則有O(0,0,0),,
設(shè),則,
設(shè)平面ABD的法向量為,


所以,令,則
所以
因為平面BCD的一個法向量為,
且二面角的大小為,所以,
,整理得
因為,所以,
解得,,所以,
設(shè)平面ABC的法向量為,
因為,

,則.所以
設(shè)二面角的平面角為,則

所以,即二面角的正切值為
法二 在△ABD中,BD⊥AO,在△BCD中,BD⊥CO,
所以∠AOC是二面角的平面角,即∠AOC=
如圖,過點A作CO的垂線交CO的延長線于點H,
因為BD⊥CO,BD⊥AO,且COAO=O,
所以BD⊥平面AOC.
因為AH平面AOC,所以BD⊥AH.
又CO⊥AH,且COBD=O,所以AH⊥平面BCD.
過點A作AK⊥BC,垂足為K,連接HK.
因為BC⊥AH,AKAH=A,所以BC⊥平面AHK.
因為HK平面AHK,所以BC⊥HK,
所以∠AKH為二面角的平面角.

在△AOH中,∠AOH=,則,,
所以
在R t△CHK中,∠HCK=,所以
在 R t△AHK中,,
所以二面角的正切值為
考點:直線與平面垂直的判定;與二面角有關(guān)的立體幾何綜合題.
點評:本小題主要考查空間線面關(guān)系、二面角的度量、直線與平面所成的角等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運算求解能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正三棱錐O﹣ABC的底面邊長為2,高為1,求該三棱錐的體積及表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點,求證:

(1)B,C,H,G四點共面;
(2)平面EFA1∥平面BCHG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在長方體中,,過、、三點的平面截去長方體的一個角后,得到如圖所示的幾何體,且這個幾何體的體積為

(1)求棱的長;
(2)若的中點為,求異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直角梯形中,,是等邊三角形,平面⊥平面.

(1)求二面角的余弦值;
(2)求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,
求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形都是邊長為的正方形,點E是的中點,

求證:;
求證:平面;
求體積的比值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱(側(cè)棱垂直底面)中,M、N分別是BC、AC1中點,AA1=2,AB=,AC=AM=1.

(1)證明:MN∥平面A1ABB1
(2)求幾何體C—MNA的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知為平行四邊形,,,,點上,,相交于.現(xiàn)將四邊形沿折起,使點在平面上的射影恰在直線上.

(Ⅰ) 求證:平面
(Ⅱ) 求折后直線與平面所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案