如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.
(1) 求CD與面ABC所成的角正弦值的大小;
(2) 對于AD上任意點H,CH是否與面ABD垂直。
(1) =;
(2) CH不可能同時垂直BD和BA,即CH不與面ABD垂直。
【解析】
試題分析:依題意,ABD=90o,建立如圖的坐標系使得△ABC在yoz平面上,△ABD與△ABC成30o的二面角, DBY=30o,又AB=BD=2, A(0,0,2),B(0,0,0),C(0,,1),D(1,,0),
(1)x軸與面ABC垂直,故(1,0,0)是面ABC的一個法向量。
設CD與面ABC成的角為,而= (1,0,-1),
sin==
[0,],=; 6分
(2) 設=t= t(1,,-2)= (t,t,-2 t),
=+=(0,-,1) +(t,t,-2 t) = (t,t-,-2 t+1),
若,則 (t,t-,-2 t+1)·(0,0,2)="0" 得t=, 10分
此時=(,-,0),而=(1,,0),·=-=-10, 和不垂直,即CH不可能同時垂直BD和BA,即CH不與面ABD垂直。12分
考點:立體幾何中的平行關系、垂直關系,角的計算,空間向量的應用。
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,本題利用空間向量,簡化了證明及計算過程。
科目:高中數(shù)學 來源: 題型:
1 | ||
|
|
π |
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
BF |
FC |
π |
6 |
π |
6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
D、H、G為垂足.若將正△ABC繞AD旋轉(zhuǎn)一周所得的圓錐體積為V,則其中由陰影部分所產(chǎn)生的旋轉(zhuǎn)體的體積與V的比值為多少?
圖6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com