A. | ($\frac{π}{6}$,0) | B. | ($\frac{π}{3}$,0) | C. | ($\frac{π}{4}$,0) | D. | ($\frac{π}{2}$,0) |
分析 由已知利用函數(shù)的對稱性可求g(x),進(jìn)而利用余弦函數(shù)的圖象和性質(zhì)即可得解.
解答 解:∵函數(shù)f(x)=$\frac{sin(4x+\frac{π}{3})}{sin(2x+\frac{2π}{3})}$ 的圖象與g(x)的圖象關(guān)于直線x=$\frac{π}{12}$ 對稱,
設(shè)P(x,y)為函數(shù)g(x)圖象上的任意一點(diǎn),
則P關(guān)于直線x=$\frac{π}{12}$的對稱點(diǎn)P′($\frac{π}{6}$-x,y)在f(x)圖象上,
∴滿足y=f($\frac{π}{6}$-x)=$\frac{sin4x}{sin2x}$=2cos2x,可得:g(x)=2cos2x,
∴由2x=kπ+$\frac{π}{2}$,k∈Z,解得x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z,
∴當(dāng)k=0時,則g(x)的圖象的對稱中心為($\frac{π}{4}$,0).
故選:C.
點(diǎn)評 本題主要考查了函數(shù)的對稱性,余弦函數(shù)的圖象和性質(zhì),考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{π}{6}$,0) | B. | ($\frac{π}{3}$,0) | C. | ($\frac{π}{4}$,0) | D. | ($\frac{π}{2}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,4} | B. | {4,6} | C. | {6,8} | D. | {2,8} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com