對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.如果函數(shù)有且僅有兩個不動點0、2,且

(1)試求函數(shù)f(x)的單調(diào)區(qū)間;

(2)已知各項均為負的數(shù)列{an}滿足,求證:;

(3)設(shè),Tn為數(shù)列{bn}的前n項和,求證:.

答案:
解析:

  (1)設(shè)

  ∴ ∴

  由

  又∵ ∴ ∴  3分

  于是

  由;由

  故函數(shù)的單調(diào)遞增區(qū)間為,

  單調(diào)減區(qū)間為  4分

  (2)由已知可得,當(dāng)時,

  兩式相減得

  ∴

  當(dāng)時,,若,則這與矛盾

  ∴ ∴  6分

  于是,待證不等式即為.為此,我們考慮證明不等式

  令,

  再令

  由

  ∴當(dāng)時,單調(diào)遞增

  ∴ 于是

  即  ①

  令, 由

  ∴當(dāng)時,單調(diào)遞增 ∴ 于是

  即 、

  由①、②可知  10分

  所以,,即  11分

  (3)由(2)可知 則

  在中令n=1,2,3……2010并將各式相加得

  

  即  14分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)一模理) (本小題滿分14分)對于函數(shù)f(x),若存在,使成立,則稱x0f(x)的不動點. 如果函數(shù)有且僅有兩個不動點0,2,且

(1)試求函數(shù)f(x)的單調(diào)區(qū)間;

(2)已知各項不為零且不為1的數(shù)列{an}滿足,求證:

(3)設(shè),為數(shù)列{bn}的前n項和,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

       對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0f(x)的不動點  已知函數(shù)f(x)=ax2+(b+1)x+(b–1)(a≠0)

(1)若a=1,b=–2時,求f(x)的不動點;

(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍;

(3)在(2)的條件下,若y=f(x)圖像上A、B兩點的橫坐標(biāo)是函數(shù)f(x)的不動點,且AB關(guān)于直線y=kx+對稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0f(x)的不動點.如果函數(shù)

f(x)=ax2bx+1(a>0)有兩個相異的不動點x1,x2

⑴若x1<1<x2,且f(x)的圖象關(guān)于直線xm對稱,求證:<m<1;

⑵若|x1|<2且|x1x2|=2,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖南師大附中高三第二次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

對于函數(shù)f(x),若在其定義域內(nèi)存在兩個實數(shù)a,b(a<b),使當(dāng)x∈[a,b]時,f(x)的值域也是[a,b],則稱函數(shù)f(x)為“布林函數(shù)”,區(qū)間[a,b]稱為函數(shù)f(x)的“等域區(qū)間”.

(1)布林函數(shù)的等域區(qū)間是         .

(2)若函數(shù)是布林函數(shù),則實數(shù)k的取值范圍是           .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖南省華容縣高一第一學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本小題滿分6分)對于函數(shù)f(x),若存在x0ÎR,使f(x0)=x0成立,則稱點(x0,x0)為函數(shù)的不動點,已知函數(shù)f(x)=ax2+bx-b有不動點(1,1)和(-3,-3),求a、b的值。

 

查看答案和解析>>

同步練習(xí)冊答案