設橢圓C的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且2數(shù)學公式.則橢圓C的離心率為________.


分析:先確定Q的坐標,利用AQ⊥AF2,可得=0,即可求得橢圓的離心率.
解答:設橢圓的方程為(a>b>0),則A(0,b),F(xiàn)1(-c,0),F(xiàn)2(c,0)
∵2,∴Q(-3c,0)
=(-3c,-b),=(c,-b)
∵AQ⊥AF2,∴=-3c2+b2=0,
∴b2=3c2,∴a2-c2=3c2,
∴a=2c,∴e==
故答案為:
點評:本題考查橢圓的性質,考查向量知識的運用,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點P(-1,
3
2
)是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上一點F1、F2分別是橢圓C的左、右焦點,O是坐標原點,PF1⊥x軸.
①求橢圓C的方程;
②設A、B是橢圓C上兩個動點,滿足:
PA
+
PB
PO
(0<λ<4,且λ≠2)求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•藍山縣模擬)設橢圓C的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且2
F1F2
+
F2Q
=
0
.則橢圓C的離心率為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西師大附中高三5月模擬考試文科數(shù)學試卷(解析版) 題型:解答題

設橢圓C:的左、右焦點分別為F1、F2,A是橢圓C上的一點,,坐標原點O到直線AF1的距離為.

(1)求橢圓C的方程;

(2)設Q是橢圓C上的一點,過點Q的直線l 交 x 軸于點,交 y 軸于點M,若,求直線l 的斜率.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖南省永州市藍山二中等三校高三第四次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:填空題

設橢圓C的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且2.則橢圓C的離心率為   

查看答案和解析>>

同步練習冊答案