【題目】已知橢圓的離心率為,、分別為橢圓的左、右頂點,點滿足.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線經(jīng)過點且與交于不同的兩點、,試問:在軸上是否存在點,使得直線 與直線的斜率的和為定值?若存在,請求出點的坐標及定值;若不存在,請說明理由.
【答案】(1) (2) ,定值為1.
【解析】試題分析:
(Ⅰ)由可得,再根據(jù)離心率求得,由此可得,故可得橢圓的方程.(Ⅱ)由題意可得直線的斜率存在,設(shè)出直線方程后與橢圓方程聯(lián)立消元后得到一元二次方程,求出直線 與直線的斜率,結(jié)合根與系數(shù)的關(guān)系可得
,根據(jù)此式的特點可得當時,為定值.
試題解析:
(Ⅰ)依題意得、,,
∴,
解得.
∵,
∴,
∴,
故橢圓的方程為.
(Ⅱ)假設(shè)存在滿足條件的點.
當直線與軸垂直時,它與橢圓只有一個交點,不滿足題意.
因此直線的斜率存在,設(shè)直線的方程為,
由消去整理得
,
設(shè)、,
則,,
∵
,
∴要使對任意實數(shù),為定值,則只有,
此時.
故在軸上存在點,使得直線與直線的斜率的和為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 若f(x1)=f(x2),且x1<x2,關(guān)于下列命題:(1)f(x1)>f(﹣x2);(2)f(x2)>f(﹣x1);(3)f(x1)>f(﹣x1);(4)f(x2)>f(﹣x2).正確的個數(shù)為( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某百貨商店今年春節(jié)期間舉行促銷活動,規(guī)定消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商店經(jīng)理對春節(jié)前天參加抽獎活動的人數(shù)進行統(tǒng)計,表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
5 | 8 | 8 | 10 | 14 | 15 | 17 |
(Ⅰ)經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(Ⅱ)該商店規(guī)定:若抽中“一等獎”,可領(lǐng)取元購物券;抽中“二等獎”可領(lǐng)取元購物券;抽中“謝謝惠顧”,則沒有購物券.已知一次抽獎活動獲得“一等獎”的概率為,獲得“二等”的概率為.現(xiàn)有張、王兩位先生參與了本次活動,且他們是否中獎相互獨立,求此二人所獲購物券總金額的分布列及數(shù)學(xué)期望.
參考公式:,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某工廠的一個車間抽取某種產(chǎn)品50件,產(chǎn)品尺寸(單位:)落在各個小組的頻數(shù)分布如下表:
數(shù)據(jù)分組 | |||||||
頻數(shù) | 3 | 8 | 9 | 12 | 10 | 5 | 3 |
(1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在的概率;
(2)求這50件產(chǎn)品尺寸的樣本平均數(shù).(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)根據(jù)產(chǎn)品的頻數(shù)分布,求出產(chǎn)品尺寸中位數(shù)的估計值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex-1-x-ax2.
(1)若a=0,求f(x)的單調(diào)區(qū)間;
(2)若當x≥0時,f(x)≥0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓: ,其左右焦點為、,過點的直線交橢圓于, 兩點,線段的中點為, 的中垂線與軸和軸分別交于、兩點,且、、構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)記的面積為, (為原點)的面積為,試問:是否存在直線,使得?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,,為橢圓的左、右焦點,為橢圓上的任意一點,的面積的最大值為1,、為橢圓上任意兩個關(guān)于軸對稱的點,直線與軸的交點為,直線交橢圓于另一點.
(1)求橢圓的標準方程;
(2)求證:直線過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com