13.符號(hào)[x]表示不超過(guò)x的最大整數(shù),如[π]=3,[-10.3]=-11,定義函數(shù){x}=x-[x],那么下列結(jié)論中正確的序號(hào)是②③.
①函數(shù){x}的定義域?yàn)镽,值域?yàn)閇0,1];
②方程$\{x\}=\frac{1}{2}$有無(wú)數(shù)解;
③函數(shù){x}是周期函數(shù);
④函數(shù){x}在[n,n+1](n∈Z)是增函數(shù).

分析 此題為函數(shù)定義方面的創(chuàng)新題,

解答 ①當(dāng) x 取整數(shù)時(shí),{x}=0 恒成立.當(dāng) x∈(n,n+1)(n∈Z) 時(shí),{x}不可能取到 1.{x}函數(shù)值域?yàn)閇0,1).故①不正確.
②當(dāng)取 x=n+$\frac{1}{2}$,且 n 為正整數(shù)時(shí),{x}=x-[x]=n+$\frac{1}{2}$-n=$\frac{1}{2}$,故這樣的正整數(shù)n有無(wú)數(shù)多個(gè),所以②正確.
③因?yàn)閧x+1}=(x+1)-[x+1]=x-[x]={x},故函數(shù){x}是周期為1的函數(shù).所以③正確;
④函數(shù)定義域?yàn)镽,取 n 為正整數(shù).當(dāng) x=n 時(shí),{x}=n-[n]=0; 當(dāng) x=n+1 時(shí),{x}=n+1-[n+1]=0; 所以{x}在區(qū)間[n,n+1](n∈Z)不是增函數(shù).

點(diǎn)評(píng) 本題需對(duì)新函數(shù)定義的充分理解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在梯形ABCD中,∠ABC=$\frac{π}{2}$,AD∥BC,BC=2AD=2AB=2,.將梯形ABCD繞BC所在的直線(xiàn)旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為( 。
A.πB.$\frac{4π}{3}$C.$\frac{5π}{3}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.P是橢圓$\frac{x^2}{5}+\frac{y^2}{4}=1$上的一點(diǎn),F(xiàn)1和F2是焦點(diǎn),若∠F1PF2=30°,則△F1PF2的面積等于( 。
A.$\frac{{16\sqrt{3}}}{3}$B.$16(2+\sqrt{3})$C.$4(2-\sqrt{3})$D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知a>1,且f(logax)=$\frac{a}{{{a^2}-1}}(x-\frac{1}{x})$.
(1)求f(x)的解析式;
(2)判斷f(x)的奇偶性與單調(diào)性(直接寫(xiě)出結(jié)論,不需要證明);
(3)對(duì)于f(x),當(dāng)x∈(-1,1)時(shí),有f(1-m)+f(1-m2)<0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{{x}^{3}}{6}$+$\frac{a}{2}$x2+2xlnx,(a∈R),在x=1處的切線(xiàn)斜率為-$\frac{1}{2}$.
(Ⅰ)求實(shí)數(shù)a的值及此時(shí)的切線(xiàn)方程;
(Ⅱ)若曲線(xiàn)y=f(x)上存在三條斜率為m+2的切線(xiàn),三個(gè)切點(diǎn)的橫坐標(biāo)分別為x1,x2,x3(x1<x2<x3),求證:x3-x1<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知x,y∈R,滿(mǎn)足x2+2xy+4y2=6,則z=x2+4y2的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列四個(gè)函數(shù)中,在(-∞,0)上是增函數(shù)的是( 。
A.y=x2+1B.y=1-$\frac{1}{x}$C.y=x2-5x-6D.y=3-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知集合A={x|3≤3x≤27},$B=\left\{{x\left|{{{log}_{\frac{1}{2}}}(2x-1)<-1}\right.}\right\}$.
(1)分別求A∩B,(∁RB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求實(shí)數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)函數(shù)f(x)=x3-12x+b,則下列結(jié)論正確的是( 。
A.函數(shù)f(x)在(-∞,-1)上單調(diào)遞增
B.函數(shù)f(x)在(-∞,-1)上單調(diào)遞減
C.若b=0,則函數(shù)f(x)的圖象與直線(xiàn)y=10只有一個(gè)公共點(diǎn)
D.若b=-6,則函數(shù)f(x)的圖象在點(diǎn)(-2,f(-2))處的切線(xiàn)方程為y=10

查看答案和解析>>

同步練習(xí)冊(cè)答案