12.定義在R上的奇函數(shù)f(x)滿足在(-∞,0)上為增函數(shù)且f(-1)=0,則不等式x•f(x)>0的解集為( 。
A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)

分析 根據(jù)題意,由函數(shù)f(x)的奇偶性和單調(diào)性,畫出函數(shù)f(x)的草圖,又由x•f(x)>0?$\left\{\begin{array}{l}{x>0}\\{f(x)>}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)<0}\end{array}\right.$,結(jié)合函數(shù)的圖象分析可得答案.

解答 解:根據(jù)題意,f(x)為奇函數(shù)且在(-∞,0)上為增函數(shù),則f(x)在(0,+∞)上也是增函數(shù),
若f(-1)=0,得f(-1)=-f(1)=0,即f(1)=0,
作出f(x)的草圖,如圖所示:
對(duì)于不等式x•f(x)>0,
有x•f(x)>0?$\left\{\begin{array}{l}{x>0}\\{f(x)>}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)<0}\end{array}\right.$,
分析可得x<-1或x>1,
即x∈(-∞,-1)∪(1,+∞);
故選:A.

點(diǎn)評(píng) 本題函數(shù)的奇偶性與單調(diào)性的應(yīng)用,涉及不等式的解法,利用函數(shù)的奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵,利用數(shù)形結(jié)合進(jìn)行求解比較容易.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知U=R,集合A={x|a-2<x<a+2},B={x|x2-(a+2)x+2a=0},a∈R,
(1)若a=0,求A∪B;
(2)若(∁UA)∩B≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.執(zhí)行如圖程序,若輸出的結(jié)果是4,則輸入的x的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(1,0,-1),$\overrightarrow$=(-1,-1,0),則|$\overrightarrow{a}$|的值是$\sqrt{2}$,向量$\overrightarrow{a}$與$\overrightarrow$之間的夾角是120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.tan$\frac{π}{4}$等于( 。
A.-1B.1C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(-x),x<0}\\{{3}^{x-2},x≥0}\end{array}\right.$,且f(a)=3,則f(2)的值是1,實(shí)數(shù)a的值是3或-27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=4sinxcos({x+\frac{π}{3}})+4\sqrt{3}{sin^2}x-\sqrt{3}$.
(Ⅰ)求$f({\frac{π}{3}})$的值;
(Ⅱ)求f(x)圖象的對(duì)稱軸方程;
(Ⅲ)求f(x)在$[{-\frac{π}{4}\;,\;\frac{π}{3}}]$上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列各式錯(cuò)誤的是(  )
A.30.8>30.7B.log0.50.4>log0.50.6
C.0.75-0.1<0.750.1D.log2$\sqrt{3}$>log3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求證:$\frac{1-2sinxcosx}{co{s}^{2}x-si{n}^{2}x}$=$\frac{1-tanx}{1+tanx}$,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案