直線的參數(shù)方程是                                          (  )
A.B.C.D.
C

分析:由已知y=2x=1,可化為點(diǎn)斜式方程:y+1=2(x+1),令x+1=t,則y+1=2t,即可化為直線的參數(shù)方程.
解:∵y=2x+1,∴y+1=2(x+1),令x+1=t,則y+1=2t,可得,即為直線y=2x+1的參數(shù)方程.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程是,圓C的極坐標(biāo)方程為
(1)求圓心C的直角坐標(biāo);
(2)由直線上的點(diǎn)向圓C引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線過點(diǎn)且傾斜角為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線相交于兩點(diǎn);
(1)若,求直線的傾斜角的取值范圍;
(2)求弦最短時(shí)直線的參數(shù)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程。平面直角坐標(biāo)系中,直線
的參數(shù)方程是為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐
標(biāo)系,已知曲線的極坐標(biāo)方程為
(Ⅰ)求直線的極坐標(biāo)方程;
(Ⅱ)若直線與曲線相交于兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A,B.若點(diǎn)P的坐標(biāo)為(3, ),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.選修4—4:坐標(biāo)系與參數(shù)方程
以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為
(1)若把曲線上的橫坐標(biāo)縮短為原來的,縱坐標(biāo)不變,得到曲線,
求曲線在直角坐標(biāo)系下的方程
(2)在第(1)問的條件下,判斷曲線與直線的位置關(guān)系,并說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線的斜率為                  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(極坐標(biāo)與參數(shù)方程選做題)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為
為參數(shù),).若以為極點(diǎn),以軸正半軸為極軸建
立極坐標(biāo)系,則曲線的極坐標(biāo)方程為                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(二)選做題:第14、15題為選做題,考生只能選做一題,兩題全答的,只計(jì)算第一題的得分.

(坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系中,是曲線上任意兩點(diǎn),則線段長度的最大值為         
(幾何證明選講)如圖,是半圓的直徑,是半圓上異于的點(diǎn),,垂足為,已知,,則       

查看答案和解析>>

同步練習(xí)冊(cè)答案