【題目】在二項式的展開式中,

1)若展開式中第5項、第6項與第7項的二項式系數(shù)成等差數(shù)列,求展開式中二項式系數(shù)最大的項的系數(shù);(最后結果用算式表達,不用計算出數(shù)值)

2)若展開式前三項的二項式系數(shù)的和等于79,求展開式中系數(shù)最大的項.(最后結果用算式表達,不用計算出數(shù)值)

【答案】(1)時,最大項系數(shù)為;當時最大項系數(shù)為.(2) .

【解析】

(1)成等差數(shù)列可求出,進而可求出展開式中二項式系數(shù)最大的項的系數(shù);

(2)可求出,令可求出,從而可求其系數(shù).

解:展開式中第項為.

(1) 則第5項、第6項與第7項的二項式系數(shù)為成等差數(shù)列,則,

,即,解得.

時,二項式系數(shù)最大項為,此時系數(shù)為.

時,二項式系數(shù)最大項為,此時系數(shù)為.

(2) 前三項的二項式系數(shù)為,其和為79.即,即

,整理得,,解得(舍去).

設展開式中第項系數(shù)最大,即,解得,,

因為,所以,即展開式中第9項系數(shù)最大,系數(shù)為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C:(a>0,b>0)的漸近線方程為y=±x,右頂點為(1,0).

(1)求雙曲線C的方程;

(2)已知直線y=x+m與雙曲線C交于不同的兩點A,B,且線段AB的中點為,當x0≠0時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線L:為參數(shù)),曲線為參數(shù))

(Ⅰ)設相交于兩點,求

(Ⅱ)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,直線相切于點,

(Ⅰ)求拋物線的方程;

(Ⅱ)設直線兩點,的中點,若,求點軸距離的最小值及此時直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且存在不同的實數(shù)x1,x2,x3,使得fx1=fx2=fx3),則x1x2x3的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知8件不同的產(chǎn)品中有3件次品,現(xiàn)對它們一一進行測試,直至找到所有次品.

(1)若恰在第2次測試時,找到第一件次品,第6次測試時,才找到最后一件次品,則共有多少種不同的測試方法?

(2)若至多測試5次就能找到所有次品,則共有多少種不同的測試方法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三角形ABC中,,AC=1,以B為直角頂點作等腰直角三角形BCD(A、DBC兩側),當∠BAC變化時,線段AD的長度最大值為._______________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,,,,分別為線段,上的點,且.

(1)證明:;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知極坐標系中,點,曲線的極坐標方程為,點在曲線上運動,以極點為坐標原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程為為參數(shù)。

(1)求直線的極坐標方程與曲線的參數(shù)方程;

(2)求線段的中點到直線的距離的最大值。

查看答案和解析>>

同步練習冊答案