【題目】已知極坐標(biāo)系中,點(diǎn),曲線的極坐標(biāo)方程為,點(diǎn)在曲線上運(yùn)動(dòng),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)。
(1)求直線的極坐標(biāo)方程與曲線的參數(shù)方程;
(2)求線段的中點(diǎn)到直線的距離的最大值。
【答案】(1),(;(2).
【解析】
(1)由直線l的參數(shù)方程,求出直線的普通方程,由此能求出直線l的極坐標(biāo)方程;由曲線C的極坐標(biāo)方程求出曲線C的直角坐標(biāo),由此能求出曲線C的參數(shù)方程.
(2)設(shè)N(2cosα,2sinα),(0≤α<2π),點(diǎn)M的極坐標(biāo)化為直角坐標(biāo)為(4,4),則P( +2,sinα+2),點(diǎn)P到直線l的距離d= ,由此能求出點(diǎn)P到l的距離的最大值.
(1)∵直線l的參數(shù)方程為為參數(shù)).∴直線的普通方程為x﹣y﹣10=0,
∴直線l的極坐標(biāo)方程為ρcosθ﹣ρsinθ﹣10=0,即.
∵曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ﹣12=0,
∴曲線C的直角坐標(biāo)方x2+3y2﹣12=0,即.
∴曲線C的參數(shù)方程為,(α為參數(shù)).
(2)設(shè)N(2cosα,2sinα),(0≤α<2π),點(diǎn)M的極坐標(biāo)(4,)化為直角坐標(biāo)為(4,4),則P(+2,sinα+2),
∴點(diǎn)P到直線l的距離d==≤6,
當(dāng)sin()=1時(shí),等號(hào)成立,∴點(diǎn)P到l的距離的最大值為6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在二項(xiàng)式的展開(kāi)式中,
(1)若展開(kāi)式中第5項(xiàng)、第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù);(最后結(jié)果用算式表達(dá),不用計(jì)算出數(shù)值)
(2)若展開(kāi)式前三項(xiàng)的二項(xiàng)式系數(shù)的和等于79,求展開(kāi)式中系數(shù)最大的項(xiàng).(最后結(jié)果用算式表達(dá),不用計(jì)算出數(shù)值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù),有三個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】水果的價(jià)格會(huì)受到需求量和天氣的影響.某采購(gòu)員定期向某批發(fā)商購(gòu)進(jìn)某種水果,每箱水果的價(jià)格會(huì)在當(dāng)日市場(chǎng)價(jià)的基礎(chǔ)上進(jìn)行優(yōu)惠,購(gòu)買(mǎi)量越大優(yōu)惠幅度越大,采購(gòu)員通過(guò)對(duì)以往的10組數(shù)據(jù)進(jìn)行研究,發(fā)現(xiàn)可采用來(lái)作為價(jià)格的優(yōu)惠部分(單位:元/箱)與購(gòu)買(mǎi)量(單位:箱)之間的回歸方程,整理相關(guān)數(shù)據(jù)得到下表(表中):
(1)根據(jù)參考數(shù)據(jù),
①建立關(guān)于的回歸方程;
②若當(dāng)日該種水果的市場(chǎng)價(jià)為200元/箱,估算購(gòu)買(mǎi)100箱該種水果所需的金額(精確到0.1元).
(2)在樣本中任取一點(diǎn),若它在回歸曲線上或上方,則稱(chēng)該點(diǎn)為高效點(diǎn).已知這10個(gè)樣本點(diǎn)中,高效點(diǎn)有4個(gè),現(xiàn)從這10個(gè)點(diǎn)中任取3個(gè)點(diǎn),設(shè)取到高效點(diǎn)的個(gè)數(shù)為,求的數(shù)學(xué)期望.
附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,,參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】戶外運(yùn)動(dòng)已經(jīng)成為一種時(shí)尚運(yùn)動(dòng),某單位為了了解員工喜歡戶外運(yùn)動(dòng)是否與性別有關(guān),決定從本單位全體650人中采用分層抽樣的辦法抽取50人進(jìn)行問(wèn)卷調(diào)查,得到了如下列聯(lián)表:
喜歡戶外運(yùn)動(dòng) | 不喜歡戶外運(yùn)動(dòng) | 總計(jì) | |
男性 | 5 | ||
女性 | 10 | ||
總計(jì) | 50 |
已知在這50人中隨機(jī)抽取1人,抽到喜歡戶外運(yùn)動(dòng)的員工的概率是.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)求該公司男、女員工各多少人;
(3)在犯錯(cuò)誤的概率不超過(guò)0.005的前提下能否認(rèn)為喜歡戶外運(yùn)動(dòng)與性別有關(guān)?并說(shuō)明你的理由.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為2的正方體中,點(diǎn)分別是棱上的動(dòng)點(diǎn),且.
(1)求證:;
(2)當(dāng)三棱錐的體積取得最大值時(shí),求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,底面是矩形,平面,是的中點(diǎn),,.
(1)求異面直線AE與CD所成角的大。
(2)求二面角E-AD-B大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或者對(duì)機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開(kāi)始呈現(xiàn)該疾病對(duì)應(yīng)的相關(guān)癥狀時(shí)止的這一階段稱(chēng)為潛伏期.一研究團(tuán)隊(duì)統(tǒng)計(jì)了某地區(qū)100名患者的相關(guān)信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數(shù) | 85 | 205 | 310 | 250 | 130 | 15 | 5 |
(1)求這1000名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過(guò)6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為潛伏期與患者年齡有關(guān);
潛伏期天 | 潛伏期天 | 總計(jì) | |
50歲以上(含50歲) | 100 | ||
50歲以下 | 55 | ||
總計(jì) | 200 |
附:
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
,其中.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com