8.直線y-1=k(x-1)(k∈R)與x2+y2-2y=0的位置關系(  )
A.相離或相切B.相切C.相交D.相切或相交

分析 利用圓心到直線的距離與半徑比較,大于半徑,相離,等于,相切,小于相交.

解答 解:由題意:圓x2+y2-2y=0化為x2+(y-1)2=1,圓心為(0,1),半徑是1.
由直線方程y-1=k(x-1)可知:直線過定點(1,1),
那么:圓心到定點的距離為1,說明定點在圓上;
∵k∈R,∴過定點的直線必然與圓相交.
故選:C.

點評 本題考查了直線與圓的位置關系的判斷方法.利用圓心到定點距離與半徑比較,第二是消元,構造二次方程,利用判別式.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.下列說法錯誤的是( 。
A.命題“?x∈R,x2-2x+1<0”的否定是“?x∈R,x2-2x+1≥0”
B.命題“若m>0,則方程x2+x-m=0有實根”的逆命題為真命題
C.命題“若a>b,則ac2>bc2”的否命題為真命題
D.若命題“¬p∨q”為假命題,則“p∧¬q”為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若$\frac{1}{a}$<$\frac{1}$<0,則下列結論正確的是(  )
A.|a|>|b|B.$\frac{a}$<1C.ab<b2D.ab>b2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.定義在區(qū)間[0,5π]上的函數(shù)y=2sinx的圖象與y=cosx的圖象的交點個數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最下正周期為π,且點P($\frac{π}{6}$,2)是該函數(shù)圖象的一個人最高點.
(1)求函數(shù)f(x)的解析式;
(2)若x∈[-$\frac{π}{2}$,0],求函數(shù)y=f(x)的值域;
(3)把函數(shù)y=f(x)的圖線向右平移θ(0<θ<$\frac{π}{2}$)個單位,得到函數(shù)y=g(x)在[0,$\frac{π}{4}$]上是單調增函數(shù),求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖,橢圓E的左、右焦點分別為F1,F(xiàn)2,過F1且斜率為$\frac{4}{3}$的直線交橢圓E于P,Q兩點,若△PF1F2為直角三角形,則橢圓E的離心率為$\frac{1}{3}$或$\frac{5}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知角α∈(-$\frac{π}{2}$,0),sinα=-$\frac{5}{13}$,求sin($\frac{π}{6}$+α)和cos($\frac{π}{6}$+α).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若tanα=2,tanβ=3,且α,β∈(0,$\frac{π}{2}$),則α+β的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{5π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.拋物線x2=4y的準線方程是( 。
A.y=$\frac{1}{16}$B.y=-$\frac{1}{16}$C.y=xD.y=-1

查看答案和解析>>

同步練習冊答案