16.已知函數(shù)g(x)=(-x2+5x-3)ex(e為自然對(duì)數(shù)的底數(shù)),求函數(shù)y=g(x)在x=1處的切線(xiàn)方程.

分析 求出原函數(shù)的導(dǎo)函數(shù),得到g′(1)=4e,再求得g(1)=e,代入直線(xiàn)方程的點(diǎn)斜式得答案.

解答 解:由g(x)=(-x2+5x-3)ex,
得g′(x)=(-2x+5)ex+(-x2+5x-3)ex =(-x2+3x+2)ex
∴g′(1)=4e,
又g(1)=e,
∴函數(shù)y=g(x)在x=1處的切線(xiàn)方程為y-e=4e(x-1),
即4ex-y-3e=0.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究過(guò)曲線(xiàn)上某點(diǎn)處的切線(xiàn)方程,熟記導(dǎo)數(shù)的運(yùn)算法則是關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.將3枚均勻的硬幣各拋擲一次,恰有1枚正面朝上的概率為( 。
A.$\frac{1}{8}$B.$\frac{1}{3}$C.$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.根據(jù)如下樣本數(shù)據(jù)
x234567
y4.12.5-0.50.5-2.0-3.0
得到的回歸方程為$\widehaty=\hat bx+\hat a$,則( 。
A.$\hat a>0,\hat b>0$B.$\hat a>0,\hat b<0$C.$\hat a<0,\hat b>0$D.$\hat a<0,\hat b<0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知圓C:x2+y2-2ax-2y+2=0(a為常數(shù))與直線(xiàn)y=x相交于A,B兩點(diǎn),若∠ACB=$\frac{π}{3}$,則實(shí)數(shù)a=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=($\frac{1}{3}$x3-x2+$\frac{2}{3}$)cos2017($\frac{π}{3}x$+$\frac{2π}{3}$)+2x+3在[-2015,2017]上的最大值為M,最小值為m,則M+m=(  )
A.5B.10C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知集合A={x|-1<x≤1},集合B={-1,1,3},則A∩B={1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,李先生家住H小區(qū),他工作在C處科技園區(qū),從家開(kāi)車(chē)到公司上班路上有L1、L2兩條路線(xiàn),L1路線(xiàn)上有A1、A2、A3三個(gè)路口,各路口遇到紅燈的概率均為$\frac{1}{2}$;L2路線(xiàn)上有B1、B2兩個(gè)路口,各路口遇到紅燈的概率依次為$\frac{3}{4}$,$\frac{3}{5}$.
(1)若走L2路線(xiàn),求遇到紅燈次數(shù)X的分布列和數(shù)學(xué)期望;
(2)按照“平均遇到紅燈次數(shù)最少”的要求,請(qǐng)你幫助李先生從上述兩條路線(xiàn)中選擇一條最好的上班路線(xiàn),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某市對(duì)創(chuàng)“市級(jí)示范性學(xué)校”的甲、乙兩所學(xué)校進(jìn)行復(fù)查驗(yàn)收,對(duì)辦學(xué)的社會(huì)滿(mǎn)意度一項(xiàng)評(píng)價(jià)隨機(jī)訪(fǎng)問(wèn)了20位市民,這20位市民對(duì)這兩所學(xué)校的評(píng)分(評(píng)分越高表明市民的評(píng)價(jià)越好)的數(shù)據(jù)如下:
甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;
乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.
檢查組將成績(jī)分成了四個(gè)等級(jí):成績(jī)?cè)趨^(qū)間[85,100]的為A等,在區(qū)間[70,85)的為B等,在區(qū)間[60,70)的為C等,在區(qū)間[0,60)為D等.
(1)請(qǐng)用莖葉圖表示上面的數(shù)據(jù),并通過(guò)觀察莖葉圖,對(duì)兩所學(xué)校辦學(xué)的社會(huì)滿(mǎn)意度進(jìn)行比較,寫(xiě)出兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)估計(jì)哪所學(xué)校的市民的評(píng)分等級(jí)為A級(jí)或B級(jí)的概率大,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.第96屆(春季)全國(guó)糖酒商品交易會(huì)于2017年3月23日至25日在四川舉辦.展館附近一家川菜特色餐廳為了研究參會(huì)人數(shù)與本店所需原材料數(shù)量的關(guān)系,在交易會(huì)前查閱了最近5次交易會(huì)的參會(huì)人數(shù)x(萬(wàn)人)與餐廳所用原材料數(shù)量y(袋),得到如下數(shù)據(jù):
第一次第二次第三次第四次第五次
參會(huì)人數(shù)x(萬(wàn)人)11981012
原材料t(袋)2823202529
(Ⅰ)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$
(Ⅱ)若該店現(xiàn)有原材料12袋,據(jù)悉本次交易會(huì)大約有13萬(wàn)人參加,為了保證原材料能夠滿(mǎn)足需要,則該店應(yīng)至少再補(bǔ)充原材料多少袋?
(參考公式:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$))

查看答案和解析>>

同步練習(xí)冊(cè)答案