2.若復(fù)數(shù)z滿足z(1+i)=1-2i,其中i為虛數(shù)單位,則復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù)z,求出復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)的坐標(biāo)即可得答案.

解答 解:由z(1+i)=1-2i,
得$z=\frac{1-2i}{1+i}=\frac{(1-2i)(1-i)}{(1+i)(1-i)}=\frac{-1-3i}{2}$=$-\frac{1}{2}-\frac{3}{2}i$,
則復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)的坐標(biāo)為:($-\frac{1}{2}$,$-\frac{3}{2}$),位于第三象限.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.用反證法證明命題:“若a,b∈R,且a2+|b|=0,則a,b全為0”時(shí),應(yīng)假設(shè)為a,b中至少有一個(gè)不為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.考察黃煙經(jīng)過培養(yǎng)液處理與是否跟發(fā)生青花病的關(guān)系.調(diào)查了1633株黃煙,得到如表中數(shù)據(jù),請(qǐng)根據(jù)數(shù)據(jù)作統(tǒng)計(jì)分析:
培養(yǎng)液處理未處理合計(jì)
青花病30224254
無青花病2413551379
合計(jì)5415791633
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.050.010.0050.001
k3.8416.6357.87910.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)=log2x的定義域?yàn)槭茿={1,2,4},值域?yàn)锽,則A∩B=(  )
A.{1}B.{2}C.{1,2}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載了公元前344年 商鞅督造一種標(biāo)準(zhǔn)量器--商鞍銅方升,其三視圖如圖所示(單位:升),則此量器的體積為(單位:立方升)( 。
A.14B.12+$\frac{π}{2}$C.12+πD.38+2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知等差數(shù)列{an}中,a1=tan225°,a5=13a1,設(shè)Sn為數(shù)列{(-1)nan}的前n項(xiàng)和,則S2017=-3025.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.關(guān)于x的不等式|x-2|+|x-8|≥a在R上恒成立,則a的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.展開式${({{x^2}-\frac{2}{x^3}})^5}$中的常數(shù)項(xiàng)為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,已知sin2A+sin2B=sin2C,求證這個(gè)三角形是直角三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案