已知圓M的圓心在x軸上,半徑為1,直線l:y=
4
3
x-
1
2
被圓M所截的弦長為
3
,且圓心M在直線l的下方.
(Ⅰ)求圓M的方程;
(Ⅱ)若線段PQ的端點(diǎn)P的坐標(biāo)為(4,3),端點(diǎn)Q在圓M上運(yùn)動,線段PQ上一點(diǎn)R滿足
PR
=2
RQ
,求R點(diǎn)軌跡方程.
(Ⅲ)設(shè)A(0,t),B(0,t+6),(-5≤t≤-2),若圓M是△ABC的內(nèi)切圓,求△ABC的面積S的最大值和最小值.
考點(diǎn):軌跡方程,圓的標(biāo)準(zhǔn)方程
專題:綜合題,直線與圓
分析:(I)設(shè)圓心M(a,0),利用M到l:8x-6y-3=0的距離,求出M坐標(biāo),然后求圓M的方程;
(II)利用代入法,即可求出R點(diǎn)軌跡方程;
(Ⅲ)設(shè)A(0,t),B(0,t+6)(-5≤t≤-2),設(shè)AC斜率為k1,BC斜率為k2,推出直線AC、直線BC的方程,求出△ABC的面積S的表達(dá)式,求出面積的最大值和最小值.
解答: 解:(Ⅰ)設(shè)圓心M(a,0),由已知,得M到l:8x-6y-3=0的距離為
1
2
,∴
|8a-3|
82+62
=
1
2

又∵M(jìn)在l的下方,∴8a-3>0,∴8a-3=5,a=1,故圓的方程為(x-1)2+y2=1.
(Ⅱ)設(shè)Q(a,b),R(x,y),則a=1.5x-2,b=1.5y-1.5,
∵端點(diǎn)Q在圓M上運(yùn)動,
∴(1.5x-3)2+(1.5y-1.5)2=1;
(Ⅲ)設(shè)AC斜率為k1,BC斜率為k2,則直線AC的方程為y=k1x+t,直線BC的方程為y=k2x+t+6.
聯(lián)立得C點(diǎn)的橫坐標(biāo)為xc=
6
k1-k2
,
∵|AB|=t+6-t=6,∴S=
1
2
6
k1-k2
•6=
18
k1-k2

由于圓M與AC相切,所以1=
|k1+t|
1+k12
,∴k1=
1-t2
2t
;
同理,k2=
1-(t+6)2
2(t+6)

∴k1-k2=
3(t2+6t+1)
t2+6t
,
∴S=6(1-
1
t2+6t+1
),
∵-5≤t≤-2,∴-2≤t+3≤1,∴-8≤t2+6t+1≤-4,
∴Smax=
15
2
,Smin=
27
4
點(diǎn)評:本題是中檔題,考查直線與圓的位置關(guān)系,三角形面積的最值的求法,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若a,b,c成等比數(shù)列,且c=2a,則sinB=( 。
A、
1
4
B、
3
4
C、
7
4
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M,m分別是f(x)在區(qū)間[a,b]上的最大值和最小值,則m(b-a)≤∫abf(x)dx≤M(b-a),由上述估值定理,估計(jì)定積分
2
-1
2-x2
dx的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在R上定義的函數(shù)f(x)是偶函數(shù),且f(x)=f(2-x),若f(x)在區(qū)間x∈[1,2)是減函數(shù),則函數(shù) f(x)( 。
A、在區(qū)間[-2,-1]上是減函數(shù),區(qū)間[3,4]上是增函數(shù)
B、在區(qū)間[-2,-1]上是減函數(shù),區(qū)間[3,4]上是減函數(shù)
C、在區(qū)間[-2,-1]上是增函數(shù),區(qū)間[3,4]上是增函數(shù)
D、在區(qū)間[-2,-1]上是增函數(shù),區(qū)間[3,4]上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明函數(shù)y=
2
x-1
在區(qū)間[2,6]上是減函數(shù)并求出它的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}滿足a1=1,an+1=f(
1
an
),n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式,
理科:(2)令bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b2+…+bn,若Sn
m-2005
2
對一切n∈N+成立,求最小整數(shù)m.
文科:(2)令bn=
1
anan+1
(n≥1),求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程:2|x-1|•(
1
2
)-|x-2|=2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一張坐標(biāo)紙折疊一次,使得點(diǎn)(0,2)與點(diǎn)(2,0)重合,點(diǎn)(7,3)與點(diǎn)(m,n)重合,則m+n=( 。
A、4
B、6
C、10
D、
36
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,復(fù)數(shù)z=-
1
2
+
3
2
i的共軛復(fù)數(shù)為
.
z
,則
.
z
+|z|=
 

查看答案和解析>>

同步練習(xí)冊答案