直線2x-my+4=0和2mx-3y-6=0的交點位于第二象限,則m的取值范圍為
 
考點:兩條直線的交點坐標(biāo)
專題:直線與圓
分析:兩條直線的交點在第二象限,聯(lián)立方程組解出交點坐標(biāo),交點的橫坐標(biāo)小于零,同時縱坐標(biāo)大于零,解不等式組可求m的范圍.
解答: 解:由
2x-my+4=0
2mx-3y-6=0
,解得兩直線的交點坐標(biāo)為(
6+3m
m2-3
,
4m+6
m2-3

由交點在第二象限知橫坐標(biāo)為負(fù)、縱坐標(biāo)為正,故
6+3m
m2-3
<0
4m+6
m2-3
>0

解得:-2<m<-
3
2

故答案為:(-2,-
3
2
點評:本題考查直線交點的求法,以及點所在象限問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為考查某種藥物預(yù)防疾病的效果,進(jìn)行動物試驗,得到如下丟失數(shù)據(jù)的列聯(lián)表:
藥物效果試驗列聯(lián)表
患病 未患病 總計
沒服用藥 20 30 50
服用藥 x y 50
總計 M N 100
設(shè)從沒服用藥的動物中任取兩只,未患病數(shù)為X;從服用藥物的動物中任取兩只,未患病數(shù)為Y,工作人員曾計算過P(X=0)=
38
9
 P(Y=0).
(1)求出列聯(lián)表中數(shù)據(jù)x,y,M,N的值;
(2)能夠有多大的把握認(rèn)為藥物有效?
(3)現(xiàn)在從該100頭動物中,采用隨機抽樣方法每次抽取1頭,抽后返回,抽取5次,若每次抽取的結(jié)果是相互獨立的,記被抽取的5頭中為服了藥還患病的數(shù)量為ξ.,求ξ的期望E(ξ)和方差D(ξ).
參考公式:x2=
n(ad-bc)2
(a+b)(b+c)(a+c)(b+d)
(其中n=a+b+c+d)
P(K2≥k) 0.25 0.15 0.10 0.05 0.010 0.005
k 1.323 2.072 2.706 3.845 6.635 7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:
a
=(1,2),
b
=(3,-1),
c
=(-2,4),則
a
b
c
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,已知a3=12,S12>0,S13<0.則公差d的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn,滿足4S n=(an+1)2,設(shè)bn=a2n-1,Tn=b1+b2+…bn(n∈N*),則當(dāng)Tn>2013時,n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題“?x∈[1,2],x2<a”為假命題,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||x|≤a},B={x|x2+x-6≥0},若A∪B=R,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-1,2)
,
b
=(3,m),m∈R,則“m=-6”是“
a
∥(
a
+
b
)
”的(  )
A、充要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a+b=10,cosC是方程2x2+9x+4=0的一個根,求△ABC周長的最小值.

查看答案和解析>>

同步練習(xí)冊答案