已知函數(shù)則f(log23)=   
【答案】分析:先判斷出log23的范圍,代入對(duì)應(yīng)的解析式求解,根據(jù)解析式需要代入同一個(gè)式子三次,再把所得的值代入另一個(gè)式子求值,需要對(duì)底數(shù)進(jìn)行轉(zhuǎn)化,利用進(jìn)行求解.
解答:解:由已知得,,且1<log23<2,
∴f(log23)=f(log23+1)=f(log23+2)=f(log23+3)
=f(log224)==
故答案為:
點(diǎn)評(píng):本題的考點(diǎn)是分段函數(shù)求值,對(duì)于多層求值按“由里到外”的順序逐層求值,一定要注意自變量的值所在的范圍,然后代入相應(yīng)的解析式求解,此題利用了恒等式進(jìn)行求值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(-∞,0)時(shí)不等式f(x)+xf′(x)<0成立,若a=30.3•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
).則a,b,c的大小關(guān)系是( 。
A、a>b>c
B、c>a>b
C、c>b>a
D、a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)定義域?yàn)椋?π,π),且函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對(duì)稱,當(dāng)x∈(0,π)時(shí),f(x)=-f′(
π
2
)sinx-πl(wèi)nx
,(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=f(30.3),b=f(logπ3),c=f(log3
1
9
)
,則a,b,c的大小關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,且當(dāng)x∈(-∞,0)時(shí),f(x)+xf′(x)<0成立(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),則a,b,c的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州一模)已知函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱,且當(dāng)x∈(-∞,0)時(shí)有f(x)+xf'(x)<0成立a=(20.2)•f(20.2),b=(logπ3)•f(1ogπ3),c=(1og39)•f(1ong39),則a,b,c的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)定義域?yàn)椋?π,π),且函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對(duì)稱,當(dāng)x∈(0,π)時(shí),f(x)=-f′(
π
2
)sinx-πl(wèi)nx,(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=f(30.3),b=f(logπ3),c=f(-log39),則a,b,c的大小關(guān)系是( 。
A、a>b>c
B、b>a>c
C、c>b>a
D、c>a>b

查看答案和解析>>

同步練習(xí)冊(cè)答案