【題目】已知拋物線C:y2=4x的焦點為F,過點F且斜率為1的直線與拋物線C交于A、B兩點,若在以線段AB為直徑的圓上存在兩點M、N,在直線:x+y+a=0上存在一點Q,使得∠MQN=90°,則實數(shù)a的取值范圍為( 。
A. B. C. D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,曲線C1的普通方程為,曲線C2參數(shù)方程為為參數(shù)),以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,直線l的極坐標方程為.
(1)求C1的參數(shù)方程和的直角坐標方程;
(2)已知P是C2上參數(shù)對應(yīng)的點,Q為C1上的點,求PQ中點M到直線的距離取得最大值時,點Q的直角坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校從參加高二年級期末考試的學(xué)生中抽出一些學(xué)生,并統(tǒng)計了他們的數(shù)學(xué)成績(成績均為整數(shù)且滿分為100分),所得數(shù)據(jù)整理后,列出了如下頻率分布表.
分組 | 頻數(shù) | 頻率 |
[40,50) | A | 0.04 |
[50,60) | 4 | 0.08 |
[60,70) | 20 | 0.40 |
[70,80) | 15 | 0.30 |
[80,90) | 7 | B |
[90,100] | 2 | 0.04 |
合計 | C | 1 |
(1)在給出的樣本頻率分布表中,求A,B,C的值;
(2)補全頻率分布直方圖,并利用它估計全體高二年級學(xué)生期末數(shù)學(xué)成績的眾數(shù)、中位數(shù);
(3)現(xiàn)從分數(shù)在[80,90),[90,100]的9名同學(xué)中隨機抽取兩名同學(xué),求被抽取的兩名學(xué)生分數(shù)均不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)若曲線在點處的切線與軸平行,求;
(2)當時,函數(shù)的圖象恒在軸上方,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底而ABCD是菱形,且PA=AD=2,∠PAD=∠BAD=120°,E,F分別為PD,BD的中點,且.
(1)求證:平面PAD⊥平面ABCD;
(2)求銳二面角E-AC-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若,試判斷函數(shù)的零點個數(shù);
(2)若函數(shù)在上為增函數(shù),求整數(shù)的最大值.
(可能要用到的數(shù)據(jù): , , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,(其中是自然對數(shù)的底數(shù)).
(1)若,求函數(shù)在上的最大值.
(2)若,關(guān)于x的方程有且僅有一個根,求實數(shù)k的取值范圍.
(3)若對任意的、,,不等式都成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,,沿對角線AC將三角形ADC折起,得到四面體,四面體 外接球表面積為,當四面體的體積取最大值時,四面體的表面積為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com