設(shè)函數(shù)f(x)=
2x, x<0
g(x),  x>0
,若f(x)是奇函數(shù),則g(2)的值是
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的性質(zhì)直接轉(zhuǎn)化即可求值.
解答: 解:∵f(x)是奇函數(shù),
∴f(-2)=-f(2),
∵f(-2)=-2×2=-4,f(2)=g(2),
∴-4=-g(2)
∴g(2)=4.
故答案為:4.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性的應(yīng)用,根據(jù)函數(shù)奇偶性的關(guān)系是解決本題的關(guān)鍵.比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

極坐標(biāo)方程ρcosθ=4表示的曲線是(  )
A、一條平行于極軸的直線
B、一條垂直于極軸的直線
C、圓心在極軸上的圓
D、過極點(diǎn)的圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集為R,集合A={x|
1
x
≤1}
,B={x|-1≤x≤3},則A∩∁RB=(  )
A、(-1,3)
B、[-1,0]∪[1,3]
C、(-∞,-1)∪(3,+∞)
D、[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>1)的焦距為2c,直線l過點(diǎn)(b,0)和(0,c)
(1)若b=2,c=3,求此橢圓的準(zhǔn)線方程;
(2)若點(diǎn)(1,0)到直線l的距離與點(diǎn)(-1,0)到直線l的距離之和為s
4
5
a,求橢圓的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,△ABC是邊長為2的正三角形,AE=1,AE⊥平面ABC,平面BCD⊥平面ABC,BD=CD,且BD⊥CD.
(1)證明:AE∥平面BCD;
(2)證明:平面BDE⊥平面CDE;
(3)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin2(x+
π
4
)-sin2(x-
π
4
),x∈(
π
6
π
3
)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|
x
x+1
≥0,x∈R}
,集合N={x||x|≤1,x∈R},則M∩N=( 。
A、{x|0<x≤1}
B、{x|0≤x≤1}
C、{x1-1<x≤1}
D、{x1-1<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=a
 
2
2
,且S1,S2,S4成等比數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若{an}又是等比數(shù)列,令bn=
9
SnSn+1
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(1-x)-loga(1+x),其中a>0,且a≠1.
(1)判斷f(x)的奇偶性;
(2)若f(
1
2
)=1
,解不等式f(x)<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案