某校從參加某次數(shù)學(xué)能力測(cè)試的學(xué)生中中抽查36名學(xué)生,統(tǒng)計(jì)了他們的數(shù)學(xué)成績(jī)(成績(jī)均為整數(shù)且滿分為120分),成績(jī)的頻率直方圖如圖所示,
其中成績(jī)分組間是:[80,90),[90,100),[100,110),[110,120]
(1)求實(shí)數(shù)a的值并求這36名學(xué)生成績(jī)的樣本平均數(shù)
.
x
(同一組中的數(shù)據(jù)用該組的中點(diǎn)值作代表);
(2)已知數(shù)學(xué)成績(jī)?yōu)?20分有4位同學(xué),從這4位同學(xué)中任選兩位同學(xué),再?gòu)臄?shù)學(xué)成績(jī)?cè)赱80,90)中任選以為同學(xué)組成“二幫一”小組,已知甲同學(xué)的成績(jī)?yōu)?1分,乙同學(xué)的成績(jī)?yōu)?20分,求甲、乙兩同學(xué)恰好被安排在同一個(gè)“二幫一”小組的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,頻率分布直方圖
專題:概率與統(tǒng)計(jì)
分析:(1)根據(jù)頻率分步直方圖中所給的各組數(shù)據(jù)對(duì)應(yīng)的長(zhǎng)方形的長(zhǎng)和寬,求出a的值,再根據(jù)平均數(shù)求出樣本平均數(shù).
(2)先求出從數(shù)學(xué)成績(jī)?cè)赱80,90)中的人數(shù),列舉出“二幫一”小組的所有種數(shù),以及找到甲、乙兩同學(xué)恰好被安排在同一個(gè)小組的種數(shù),根據(jù)概率公式計(jì)算即可.
解答: 解:(Ⅰ)由頻率分布直方圖知,10a=1-(
1
120
+
1
60
+
1
40
)×10=
1
2
,故a=
1
20

.
X
=
1
120
×10×85+
1
60
×10×95+
1
40
×10×115=
125
6

(Ⅱ)成績(jī)?cè)赱80,90)分的學(xué)生有
1
120
×10×36
=3人,分別記為甲,A,B,數(shù)學(xué)成績(jī)?yōu)?20分有4位同學(xué)記為乙,1,2,3,
則“二幫一”小組共有18種,分別去下:甲乙1,甲乙2,甲乙3,甲12,甲13,甲23,A乙1,A乙2,A乙3,A12,A13,A23,B乙1,B乙2,B乙3,B12,B13,B23,
其中甲、乙兩同學(xué)恰好被安排在同一個(gè)“二幫一”小組有3種情況,甲乙1,甲乙2,甲乙3
故甲、乙兩同學(xué)恰好被安排在同一個(gè)“二幫一”小組的概率為
3
18
=
1
6
點(diǎn)評(píng):本題考查頻率分步直方圖的應(yīng)用以及古典概型概率問題,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用適當(dāng)?shù)姆椒ū硎鞠铝屑希?br />(1)直角坐標(biāo)系中橫坐標(biāo)為1的點(diǎn)的集合;
(2)滿足不等式1<1+3x<26的奇數(shù)組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={4,5,6,8},B={3,5,7,8},則A∪B中元素的個(gè)數(shù)為(  )
A、8B、7C、6D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了了解某班男生的體重情況,現(xiàn)采取隨機(jī)抽樣的方式從該班抽10名男生,測(cè)得他們的體重如下(單位:kg):60,62,71,65,68,65,72,66,59,72.
(1)求10名學(xué)生的體重的平均數(shù)和樣本方差;
(2)若從這10名學(xué)生中選出3名參加一項(xiàng)體育競(jìng)賽,X表示這3名學(xué)生中體重不低于70kg的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某次旅行途中,組織者要開展一個(gè)游戲節(jié)目,需要從5對(duì)夫婦中選出4位表演節(jié)目,則選出的4位中不含有夫婦的概率為( 。
A、
5
21
B、
2
7
C、
1
3
D、
8
21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+2x-m,
(1)當(dāng)m=3時(shí),求函數(shù)f(x)的零點(diǎn);
(2)當(dāng)m=3時(shí),判斷g(x)=
f(x)
x
+log2
1-x
1+x
-2的奇偶性并給予證明;
(3)當(dāng)x∈[1,+∞]時(shí),f(x)≥0恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
ex-2
x
,g(x)=
2lnx
x
,對(duì)任意x1,x2∈(0,+∞),不等式kg(x1)≤(k+1)f(x2)恒成立,則正數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=kx+3與圓x2+y2=1相切,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,圖中的四邊形都是邊長(zhǎng)為1的正方形,其中正視圖、側(cè)視圖中的兩條虛線互相垂直,則該幾何體的體積是(  )
A、
1
6
B、
1
2
C、
3
4
D、
5
6

查看答案和解析>>

同步練習(xí)冊(cè)答案