設(shè)函數(shù)f(x)=x2+2x-m,
(1)當m=3時,求函數(shù)f(x)的零點;
(2)當m=3時,判斷g(x)=
f(x)
x
+log2
1-x
1+x
-2的奇偶性并給予證明;
(3)當x∈[1,+∞]時,f(x)≥0恒成立,求m的最大值.
考點:函數(shù)零點的判定定理,函數(shù)奇偶性的判斷,函數(shù)恒成立問題
專題:計算題,證明題,函數(shù)的性質(zhì)及應用
分析:(1)當m=3時,化簡并令f(x)=x2+2x-3=0,從而解得;
(2)化簡g(x)=
f(x)
x
+log2
1-x
1+x
-2=
x2+2x-3
x
+log2
1-x
1+x
-2;從而確定函數(shù)的定義域,再可判斷g(-x)=-g(x),從而證明為奇函數(shù);
(3)配方得,f(x)=(x+1)2-m-1,從而化為m≤(x+1)2-1恒成立;再令g(x)=(x+1)2-1,對稱軸為x=-1,從而求g(x)min即可.
解答: 解:(1)當m=3時,由f(x)=x2+2x-3=0解得x=-3或x=1,
所以函數(shù)f(x)的零點是-3和1;
(2)證明:由(1)知,f(x)=x2+2x-3,
g(x)=
f(x)
x
+log2
1-x
1+x
-2=
x2+2x-3
x
+log2
1-x
1+x
-2;
x≠0
1-x
1+x
>0
解得x∈(-1,0)∪(0,1),
故g(x)的定義域關(guān)于原點對稱;
又g(x)=
x2+2x-3
x
+log2
1-x
1+x
-2=x-
3
x
+log2
1-x
1+x
,
g(-x)=-(x-
3
x
+log2
1-x
1+x
),
故g(-x)=-g(x),
故g(x)是奇函數(shù).
(3)配方得,f(x)=(x+1)2-m-1,
∵x∈[1,+∞)時,f(x)≥0恒成立,
即(x+1)2-m-1≥0恒成立,即m≤(x+1)2-1;
令g(x)=(x+1)2-1,對稱軸為x=-1,
則g(x)min=g(1)=4-1=3,
∴m≤3,故m的最大值為3.
點評:本題考查了二次函數(shù)的性質(zhì)的應用及函數(shù)的奇偶性的判斷與應用,同時考查了恒成立問題,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足z(3-4i)=5,則z的虛部為(  )
A、-
4
5
B、
4
5
C、-4
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD為矩形,AD⊥平面ABE,∠AEB=90°,F(xiàn)為CE上的點.
(Ⅰ)求證:AD∥平面BCE;
(Ⅱ)求證:AE⊥BF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

廣東省第十四屆運動會將在湛江舉行,組委會招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高編成如圖所示的莖葉圖(單位:cm),身高在175cm以上(包括175cm)定義為“高個子”身高在175cm以下(不包括175cm)定義為“非高個子”.

(1)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,再從這5人中選2人,求至少有一人是“高個子”的概率;
(2)若從身高180cm以上(包括180cm)的志愿者中選出男、女各一人,設(shè)這2人身高相差ξcm(ξ≥0),求ξ的分布列和數(shù)學期望(均值).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校從參加某次數(shù)學能力測試的學生中中抽查36名學生,統(tǒng)計了他們的數(shù)學成績(成績均為整數(shù)且滿分為120分),成績的頻率直方圖如圖所示,
其中成績分組間是:[80,90),[90,100),[100,110),[110,120]
(1)求實數(shù)a的值并求這36名學生成績的樣本平均數(shù)
.
x
(同一組中的數(shù)據(jù)用該組的中點值作代表);
(2)已知數(shù)學成績?yōu)?20分有4位同學,從這4位同學中任選兩位同學,再從數(shù)學成績在[80,90)中任選以為同學組成“二幫一”小組,已知甲同學的成績?yōu)?1分,乙同學的成績?yōu)?20分,求甲、乙兩同學恰好被安排在同一個“二幫一”小組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)(x∈R)滿足f(x+1)=-f(x),且x∈[-1,1]時,f(x)=1-x2,已知函數(shù)g(x)=
lgx,x>0
-
1
x
,x<0
,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點的個數(shù)為( 。
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某數(shù)學興趣小組的學生全部參加了“代數(shù)”和“幾何”兩個科目的考試,成績分為A,B,C,D,E五個等級,成績數(shù)據(jù)統(tǒng)計如下圖所示,其中“代數(shù)”科目的成績?yōu)锽的考生有20人.

(Ⅰ)求該小組同學中“幾何”科目成績?yōu)锳的人數(shù);
(Ⅱ)若等級A,B,C,D,E分別對應5分、3分、2分、1分,求該小組考生“代數(shù)”科目的平均分;
(Ⅲ)已知參加本次考試的同學中,恰有4人的兩科成績均為A,在至少一科成績?yōu)锳的考生中,隨機抽取兩人進行座談交流,求這兩人的兩科成績均為A的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知偶函數(shù)f(x)滿足f(x+1)=-
1
f(x)
,且當x∈[-1,0]時,f(x)=x2,若在區(qū)間[-1,3]內(nèi),函數(shù)g(x)=f(x)-loga(x+2)有4個零點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且f(x-2)=f(x+2),當0<x<2時,f(x)=1-log2(x+1),則當0<x<4時,不等式(x-2)f(x)>0的解集是
 

查看答案和解析>>

同步練習冊答案