(2012•日照一模)若直線3x-ky+6=0與直線kx-y+1=0平行,則實(shí)數(shù)k=
±
3
±
3
分析:兩直線平行時(shí),x、y的系數(shù)對應(yīng)成比例,并且不等于常數(shù)項(xiàng)的比.由此建立k的關(guān)系式,可得實(shí)數(shù)k的值.
解答:解:∵直線3x-ky+6=0與直線kx-y+1=0平行,
3
k
=
-k
-1
6
1
(k≠0),解之得k=±
3

故答案為:±
3
點(diǎn)評:本題給出含有參數(shù)的兩條直線,在它們平行時(shí)求參數(shù)k的值,著重考查了直線方程的一般式和兩直線平行的位置關(guān)系的判定等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)在如圖所示的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中點(diǎn).
(1)求證:BD⊥EG;
(2)求平面DEG與平面DEF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)給出下列四個(gè)命題:
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,則函數(shù)f(x)=x2+ax-3只有一個(gè)零點(diǎn);
③函數(shù)y=sin(2x-
π
3
)
的一個(gè)單調(diào)增區(qū)間是[-
π
12
12
]
;
④對于任意實(shí)數(shù)x,有f(-x)=f(x),且當(dāng)x>0時(shí),f′(x)>0,則當(dāng)x<0時(shí),f′(x)<0.
其中真命題的序號是
①③④
①③④
(把所有真命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)已知定義在R上奇函數(shù)f(x)滿足①對任意x,都有f(x+3)=f(x)成立;②當(dāng)x∈[0,
3
2
]
時(shí)f(x)=
3
2
-|
3
2
-2x|
,則f(x)=
1
|x|
在[-4,4]上根的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)已知f(x)=
m
n
,其中
.
m
=(sinωx+cosωx,
3
cosωx)
,
.
n
=(cosωx-sinωx,2sinωx)
(ω>0).若f(x)圖象中相鄰的兩條對稱軸間的距離不小于π.
(I)求ω的取值范圍;
(II)在△ABC中,a,b,c分別為角A,B,C的對邊,a=
7
,S△ABC=
3
2
,當(dāng)ω取最大值時(shí),f(A)=1,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)給出下列四個(gè)命題:
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,則函數(shù)f(x)=x2+ax-3只有一個(gè)零點(diǎn);
③函數(shù)y=2
2
sinxcosx
[-
π
4
,
π
4
]
上是單調(diào)遞減函數(shù);
④若lga+lgb=lg(a+b),則a+b的最小值為4.
其中真命題的序號是
①④
①④
(把所有真命題的序號都填上).

查看答案和解析>>

同步練習(xí)冊答案