3.已知函數(shù)f(x)=4sin2x+4$\sqrt{2}$sinxcosx
(Ⅰ)求函數(shù)f(x)的最小正周期和遞增區(qū)間;
(Ⅱ)求函數(shù)f(x)的圖象的對稱中心的坐標(biāo).

分析 (I)利用降次公式和二倍角公式,化簡f(x)=4sin(2x-$\frac{π}{6}$)+2,由此得到最小正周期.令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,解出x的范圍即是函數(shù)的增區(qū)間.
(II)令2x-$\frac{π}{6}$=kπ,解出x的值即是對稱中心的橫坐標(biāo),由此得到對稱中心的坐標(biāo).

解答 解:f(x)=4sin2x+4$\sqrt{2}$sinxcosx=4×$\frac{1-cos2x}{2}$+2$\sqrt{3}$sin2x=2$\sqrt{3}$sin2x-2cos2x+2=4sin(2x-$\frac{π}{6}$)+2.
(Ⅰ)函數(shù)f(x)的最小正周期T=$\frac{2π}{2}$=π.
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間是得[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z,
(Ⅱ)由2x-$\frac{π}{6}$=kπ,k∈Z,得x=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z,
∴函數(shù)f(x)的圖象的對稱中心的坐標(biāo)是($\frac{kπ}{2}$+$\frac{π}{12}$,2),k∈Z.

點評 本題考查了二倍角公式和三角函數(shù)的化簡,以及正弦函數(shù)的單調(diào)性和三角函數(shù)的對稱中心,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,(a>0,b>0)的兩個焦點為F1、F2,點A在雙曲線第一象限的圖象上,△AF1F2的面積為1,且sin∠A F1F2=$\frac{1}{\sqrt{5}}$,cos∠F1AF2=$\frac{4}{5}$
(1)求雙曲線的方程
(2)已知直線y=kx+1與雙曲線相交于不同兩點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在等差數(shù)列{an}中,a5a7=6,a2+a10=5,則a10-a6=±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知圓C:x2+y2-4x-6y+3=0,直線l:mx+2y-4m-10=0(m∈R).當(dāng)l被C截得的弦長最短時,m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}\right.$(α為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為$ρcos({θ-\frac{π}{4}})=-\frac{{\sqrt{2}}}{2}$,曲線C3:ρ=2sinθ.
(1)求曲線C1與曲線C2交點M的直角坐標(biāo);
(2)設(shè)點A,B分別是曲線曲線C2,C3上的動點,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)$f(x)={sin^2}x+\sqrt{3}sinxcosx$在區(qū)間$[{\frac{π}{4},\frac{π}{2}}]$上的最小值為( 。
A.1B.$\frac{{1+\sqrt{3}}}{2}$C.$\frac{3}{2}$D.$1+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了了解某校學(xué)生喜歡吃零食是否與性別有關(guān),隨機對此校100人進(jìn)行調(diào)查,得到如下的列表:已知在全部100人中隨機抽取1人,抽到不喜歡吃零食的學(xué)生的概率為$\frac{2}{5}$.
喜歡吃零食不喜歡吃零食辣合計
男生401050         
女生203050
合計60             40100
(Ⅰ)請將上面的列表補充完整;
(Ⅱ)是否有99.9%以上的把握認(rèn)為喜歡吃零食與性別有關(guān)?說明理由.下面的臨界值表供參考:
p(K2≥k)0.0100.0050.001
k6.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1的一條漸近線與直線x+y+1=0垂直,則該雙曲線的焦距為(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)$y=\frac{ax+2}{x+2}$在區(qū)間(-2,+∞)上是增函數(shù),則a的取值范圍為(1,+∞).

查看答案和解析>>

同步練習(xí)冊答案